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Abstract

High-resolution imagery from the IKONOS satellite may be useful for many resource management applications. We assessed the utility of

IKONOS imagery for applications in the mid-Atlantic region, including mapping of tree cover, impervious surface areas, and riparian buffer

zone variables in relation to stream health ratings. We focused on a 1313-km2 area in central Maryland using precision-georeferenced

IKONOS products. We found the IKONOS imagery to be a valuable resource for these applications, and were able to achieve map accuracies

comparable to manual aerial photo interpretation. We were also able to use derived data sets for consistent assessments over areas that would

be difficult to accomplish with traditional photographic mapping methods. For example, we found that a stream health rating of excellent

required no more than 6% impervious cover in the watershed, and at least 65% tree cover in the riparian zone. A rating of good required less

than 10% impervious and 60% tree cover. A number of issues associated with application of the IKONOS data arose, however, including

logistics of image acquisition related to phenological and atmospheric conditions, shadowing within canopies and between scene elements,

and limited spectral discrimination of cover types. Cost per unit area was also a nontrivial consideration for the image data products we used,

but allowed us to provide valuable derived products to agencies in support of their planning and regulatory decision-making processes. We

report on both the capabilities and limitations of IKONOS imagery for these varied applications.

D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Information on land cover has become an integral part of

the environmental and developmental planning process. It

has aided in the advancement of more effective land use

planning, habitat assessments, and hydrological applica-

tions. Historically, land cover and land use information

was obtained by a combination of field measurements and

aerial photo interpretation. This approach typically required

intensive interpretation by expert analysts, and cross vali-

dation methods to ensure that analyst interpretations were

consistent. Recently, satellite imagery has become available

at spatial resolution nearly comparable to aerial photo-

graphs, with the added advantage of digital multispectral
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information more complete even than those provided by

digital orthophotographs (DOQs). The platform stability of

high-resolution (1–5 m) imagery acquired from Earth-

observing satellites provides another advantage to aerial

photographs acquired from aircraft, which roll, pitch, and

yaw during flight and require corrections for those effects.

Because of these advances and advantages, as well as

commercial potential, several companies have launched or

plan to launch high-resolution satellites in the near future

(Stoney, 2001).

High-resolution multispectral imagery has many poten-

tial benefits to government organizations, nonprofit agen-

cies, and a wide array of mapping and related commercial

ventures (Dial, Bowen, Gerlach, Grodecki, & Oleszczuk,

this issue; Sawaya et al., this issue; Tanaka & Toshiro,

2001). Applications of these data can aid and assist the

monitoring and management of resource lands, parks, wet-

lands, and other protected areas, as well assess the effects of

natural disasters or complement protective measures in areas
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that have the potential to burn or flood, to name just a few.

High spatial resolution imagery is not a panacea for these

applications, however, owing to a number of issues that

arise with their use. For example, the increased textural

information available in fine-resolution imagery allows for

improved interpretation based on the shape and texture of

ground features, but techniques that have been developed to

process and analyze current satellite data, including vegeta-

tion indices or multitemporal classification techniques that

utilize mid-infrared or thermal channels (e.g., Varlyguin,

Wright, Goetz, & Prince, 2001), may not be applicable to

the additional information provided by high-resolution sat-

ellites. Other issues include difficulties in acquiring consis-

tent sequential acquisition dates, intensive computer

processing time and disk space required to store larger

image data sets, and considerations of economic efficiencies

(Fisher & Goetz, 2001).

The objective of this paper was to assess the practicality

of using high-resolution imagery, in this case provided by the

IKONOS satellite operated by Space Imaging, for resource

management applications in Montgomery County in the

mid-Atlantic region of the United States. We sought to utilize

the IKONOS imagery as an alternative to air photo interpre-

tation for updating the forested lands map, as well as to map

changes that had occurred in land use, particularly residential

development and intensification of impervious surface areas.

Additional specific goals were to assess the utility of the

IKONOS imagery for production of tree cover and impervi-

ous surface area maps, and to examine those map products

and derivatives, including riparian buffer zone land cover,

relative to stream water quality. Related applications include

the use of IKONOS to train subpixel algorithms of tree cover

and impervious surfaces using coarser resolution imagery

(e.g., Landsat). The tree and impervious area maps, when

combined, provide an improved ability to meet resource

management goals, particularly with respect to comprehen-

sive planning, rural land protection, and goals for improved

water quality. We identify and address some of the benefits

and limitations of high-resolution imagery for these research

applications.
2. Study area and data sets

The study area encompasses all of Montgomery County,

MD (1313 km2) (Fig. 1), an area comprised of a mixture of

forest and farms interspersed with a range of residential

developments and industrial/commercial zones. The county

was selected for this research because it seeks to develop

improved geospatial information, capabilities, and technol-

ogies to assess impacts of environmental change, and a

range of resource management decisions. The Maryland

National Capital Parks and Planning Commission (M-

NCPPC) and the Montgomery Department of Environmen-

tal Protection (DEP) are well advanced in their utilization of

geographic information systems (GIS) and have been na-
tionally recognized and awarded for their countywide forest

preservation and stream protection strategies. The Planning

Board of Montgomery County has established master plans

for each region to plan future development, and has been at

the forefront of many of Maryland’s ‘‘Smart Growth’’

programs. One of these includes the ‘‘Legacy Open Space’’

program to fund the purchase of culturally and environmen-

tally unique lands and to ‘‘protect the county’s surface water

supply’’ (M-NCPPC, 2000). To date, more than 12,000 ha

have been protected as parks and open space, at a cost of

over US$137 million, and additional acquisitions are

planned within a 39,000-ha agricultural preserve. There is

a desire by the DEP, M-NCPPC, and others to have these

lands connected to other parcels reserved under the

counties’ parks system and related land conservation pro-

grams, providing the county a ‘‘green infrastructure’’ of

natural areas to promote recreation opportunities, protect

water resources, and maximize biodiversity (Weber & Wolf,

2000). In the 10 years since the last aerial photo-based forest

land cover classification, however, there had been consid-

erable residential development and expanded transportation

projects, with associated predictions of rapid future rates of

land conversion (Jantz, Goetz, & Shelley, in press). These

factors provided an impetus for the applications research

presented here.

2.1. IKONOS imagery

IKONOS is the first commercially owned satellite

providing 1-m resolution panchromatic image data and 4-

m multispectral imagery (Dial et al., this issue). The

multispectral image data include three visible and one

infrared channel (Table 1). Data are collected in 11-bit

radiometric resolution and provided in a format compatible

with image analysis software. The tile size for each

individual scene is 11.3� 11.3 km. Because of its pointable

off-nadir viewing capability, the satellite revisit interval is

as little as 3–4 days.

The IKONOS images of Montgomery County (Fig. 2)

were obtained through the NASA Scientific Data Purchase, a

program designed to make remote sensing data sets available

for research and practical applications (Birk, Stanley, &

Snyder, this issue). The acquired imagery was equivalent

to Space Imaging’s Carterra Precision product, which is a

‘‘precision-georeferenced’’ image data product with an ab-

solute horizontal geometric accuracy of 5 m. The NASA

Scientific Data Purchase contract specification allowed for

mislocation errors of 250 m in standard products (see Helder,

Coan, Patrick, & Gaska, this issue), thus a precision product

was required for the analyses we wished to conduct. The

orthocorrected product we acquired had an RMS error of

approximately 1.9 m. Eleven IKONOS image tiles were

acquired in six swaths to provide complete coverage of the

entire county (Table 2). The nominal cost of the imagery was

US$141 km� 2. Although the IKONOS platform has a short

repeat schedule, a cloud-free image could not be acquired for



Table 1

IKONOS spectral band widths specified as full width at half maximum

Band Spectral wavelength (nm)

1 445–516 Blue

2 506–595 Green

3 632–698 Red

4 757–853 Near-infrared

Pan 450–900 Panchromatic

Fig. 1. Study area map of Montgomery County, MD, within the mid-Atlantic region and Chesapeake Bay watershed.
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Panel 7 during a 12-month acquisition window. For this

panel, a cloud and cloud shadow mask were created manu-

ally, through which all processings were filtered. Note that

several of the panels were acquired in late spring during leaf-

off conditions, while others were acquired in early summer

leaf-on conditions (Fig. 2). We also note that the off-nadir

view of the county for all panels, in conjunction with the

collection azimuth (Table 2), affected the radiance detected

at the sensor from the combined atmosphere and surface

constituents.

2.2. Planimetric and natural resource data layers

The sole source of reference (i.e., training and validation)

data came from planimetric GIS data sets provided by the

M-NCPPC. The primary data set for tree cover mapping was

a ‘‘natural features’’ database that contained countywide

polygon data for forested lands, agricultural lands, and

water features. The database was visually interpreted by a

commercial vendor contracted by a multiagency consor-

tium, based on use of 1992 aerial photography. The derived
forest cover map had a large minimum mapping unit to

represent forest areas, rather than individual or small clus-

ters of trees. The agricultural areas contained a wide range

of cover types, including row crops, pasture land, fallow

fields, and grassy regions.

Additional reference data were provided by the plani-

metric data of the built environment, which included highly

detailed polygons of road and building footprints. This

provided the primary data set used for impervious area

mapping. Because the planimetric and natural features

coverages were developed using photography flown some

10 years ago (1992), changes had occurred in the county up



Fig. 2. Location and acquisition dates of IKONOS image panels of the study area. Note the cloud cover remaining in Panel 7 despite a 14-month acquisition

window. (Includes material from Space Imagingn.)
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to the time of the IKONOS acquisition. This required

evaluation of the accuracy of the impervious and natural

features coverages, and screening for data sets suitable for

algorithm training and map validation.
3. Methods

3.1. IKONOS image preprocessing

The four multispectral IKONOS bands were radiometri-

cally corrected to at-sensor reflectance utilizing the methods
Table 2

IKONOS acquisition metadata

Panel Date Local

time

Sun

elevation

Sun

azimuth

Collection

elevation

Collection

azimuth

0 5/1/2001 10:59 62.08 143.46 78.25 24.83

1 5/1/2001 11:00 62.16 143.80 88.49 95.46

3 5/23/2001 11:02 67.36 139.09 85.83 276.78

4 4/6/2000 10:35 51.28 139.97 76.46 119.51

5 6/26/2000 10:53 66.98 126.80 79.06 301.54

7 4/20/2000 10:45 57.25 140.47 77.35 349.31
outlined by Goetz (1997) and the calibration parameters

provided by Space Imaging in the imagery metadata. These

corrections to top-of-atmosphere reflectance minimize the

errors associated with solar elevation and allow for between-

band comparisons of data values.

Preliminary supervised and unsupervised forest/nonfor-

est classifications were done using the IKONOS imagery.

An unsupervised classification was run using an ISO-

DATA algorithm, specifying 255 clusters, 10 iterations,

and a confidence interval of 0.96. The resultant clusters

were assigned to three categories (forest, nonforest, or

unknown) using manual interpretation of the imagery

itself. Clusters assigned to the ‘‘unknown’’ class were

located in both the forested and nonforested areas. These

were used as a mask to create a new image, which was

missing the areas that were earlier assigned to either

forest or nonforest. The unsupervised classification was

then run again on the revised image, consisting entirely of

unknown areas, using the same set of clustering param-

eters. This process was repeated five times, until it was

difficult to identify any new unknown areas. A supervised

maximum likelihood classification (MLC) was also de-

veloped using visually interpreted training areas for each
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of four land cover types (tree/forest, agriculture, urban/

built, and water). A total of 100 training areas was

identified. Classifications produced using these two

approaches were assessed for accuracy using 1000 ran-

domly selected samples that were visually interpreted to

the appropriate class, of which 100 were visited on the

ground to verify the interpretations.

Based on other work using Landsat Thematic Mapper

(TM) imagery, we suspect that the modest classification

accuracies we found (75–85%) using these classification

approaches with IKONOS imagery were due to a com-

bination of leaf-on/leaf-off imagery, limited image spec-

tral bands and spatial–spectral variability within and

between image components, as well as limitations in

the use of hand-delineated training areas or statistically

defined clusters of similar objects. As a result, we

decided to take a different approach to the classification,

focused on the use of a decision tree classifier and a

large number of training samples (described below). We

also derived four additional image variables to aid the

spectral discrimination process including: (i) Normalized

Difference Vegetation Index (NDVI), (ii) Atmospherically

Resistant Vegetation Index (ARVI), (iii) NIR/red (simple

ratio), and (iv) NIR/blue. The NDVI was added to aid in

the discrimination of sediment-laden water from wet

fields. ARVI (Kaufman & Tanre, 1992) was included to

help remove artifacts within the canopy itself, such as

canopy shadow. The simple ratio and NIR/blue ratio were

included to aid the discrimination of agricultural fields

and shrubs from trees.

3.2. Reference data preprocessing

In the case of tree cover mapping and accuracy assess-

ment, natural features reference data screening was done

by overlaying the IKONOS imagery with the reference

coverage and by deleting polygons whose cover type did

not match. The incorrectly attributed polygons included

forested and agricultural areas that had been converted to

residential or commercial (developed) land use, as well as

forested or agricultural areas that had some development

within the polygon to the extent that it could skew the

training and validation data. The water polygons were also

evaluated for accuracy with errors occurring mostly in

farm ponds that had been drained or developed, as well

as portions of water bodies occurring in rapids and over

rock that were subject to changes associated with flow

volume. These screening processes permitted the use of the

natural features coverage to develop independent training

and cross-validation data sets for the decision tree classi-

fier, and subsequent development of a tree cover map

rather than forest cover per se (where forest would imply,

e.g., >60% tree cover).

In order to minimize edge pixels, the forest, grass, and

water polygons were internally buffered by 20 m (five

IKONOS pixels). Areas converted from a natural to a
built environment since the creation of the data set were

not added to the training data set used for image

classification since the existing data included enough

samples for the spectral responses of buildings and roads.

The planimetric data were rasterized to 4-m pixels

utilizing the same pixel footprint as the IKONOS imag-

ery, so that there was exact pixel coregistration. The final

reference data set consisted of a coregistered raster file

containing forest, crops/grasses, water, buildings, and

roads.

Following data quality assessment, the reference data sets

were used as the basis for accuracy assessment. Tree cover

was assessed using the natural features data set and imper-

vious cover with the planimetric data. A combination of

random selection and reserved sample sets was used, as well

as independent interpretation of imagery and field visits.

These were derived differently for tree and impervious

cover, as described below.

3.3. Tree cover mapping

Having the natural features data set available for train-

ing the classification algorithm allowed for 1.7 million

unique randomly generated samples to be used in a land

cover stratification sampling scheme from the training

data, and retention of a proportional number of samples

in relation to the training data. Of the 1.7 million points,

600,000 were randomly removed from the data set to be

used as mutually exclusive validation points. The number

of training samples allocated to each panel depended on

the respective area of the panel, with the smallest receiving

70,000 and the largest receiving 250,000 samples. The

sample size also varied between forests, agricultural lands,

water, and urban features. Virtually no urban or suburban

trees or grasses were used in the training data because

these managed areas have high vegetation indices that

create statistical confusion with, for example, deciduous

forest spectra.

We used a decision tree classifier, or more specifically

a classification tree algorithm, within the statistical soft-

ware package S-PLUS, developed by Insightful. This

univariate decision tree algorithm, based on Breiman,

Freidman, Olshend, and Stone (1984), recursively thresh-

olds the training data into increasingly homogeneous

partitions using nonparametric rules. Decision trees have

become popular for land cover mapping (Friedl & Brod-

ley, 1997; Hansen, Dubayah, & DeFries, 1996; McCauley

& Goetz, in press) because the tree output is intuitive,

with each IKONOS band or variable threshold listed for

each successive partition. The decision tree classifier in S-

PLUS works by evaluating individual sample points, so

the values of the IKONOS pixels for the original bands,

and the derived indices and ratios were used.

Because temporal differences in the IKONOS scene

acquisition dates (Table 2) caused type confusion in early

classifications, leaf-on and leaf-off imagery required the



Table 3

Comparison of county area classified as tree or nontree using supervised

and unsupervised approaches

Classification type Type Percent of area

Unsupervised Tree 44.6

Nontree 55.4

Supervised Tree 49.7

Nontree 50.3
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development of more scene-specific decision trees based

on sample points from each individual scene only. To aid

in the development of a robust classification, each of the

six IKONOS panels was classified individually, and the

resulting decision trees were used to classify its respective

IKONOS image by applying the threshold breakpoints

listed in the classification tree to the eight image variables

described above. The panels were then mosaicked back

together for the final map of the entire county. An

accuracy assessment was completed on the final classifi-

cation using the data points reserved from the initial

sampling of the natural features coverage, without dupli-

cation of sample selections.

3.4. Impervious area mapping

The impervious surface mapping was also done using a

classification tree approach, but made use of the planimetric

map of buildings and roads rather than the natural features

database. Upon inspection, it was apparent that the building

features had few errors but the transportation features

contained numerous errors of omission, particularly parking

lots. In order to evaluate the completeness of the data, the

county was divided into 689 blocks, each of which consists

of many thousands of IKONOS pixels. Each block was

checked for errors against recent DOQs and the imagery

itself. Areas developed since the creation of the planimetric

data were not included in the training data set. Of the 689

original blocks, 197 were deemed sufficient for algorithm

development and validation-based tests of spectral discrim-

ination with sample size. Approximately 600,000 data

samples (4-m pixels) resulted.

Samples within each block were coded either impervi-

ous or nonimpervious based on interpretation of the plani-

metric data. The sample was then divided into training and

validation data sets based on each swath of IKONOS

imagery, resulting in about one-fourth (140,366) being

reserved for validation. This site-based approach reduced

the influence of spatial autocorrelation and artificially high

validation statistics. Additional training data were derived

for nonimpervious features such as water bodies and wet-

lands based on the natural features coverage described

above.

Predictor variables were chosen based on an analysis of

impervious feature signatures and their vegetation indices.

As with the tree cover mapping, the set of IKONOS spectral

variables used for prediction consisted of the four optical

bands, the NDVI, and the simple ratio (NIR/red). Two

additional spectral ratios that showed promise in discrimi-

nating open soil plots from impervious features were also

used (NIR/blue and NIR/green). The spectral information

and impervious class for each of these data sets were used to

grow impervious surface classification trees. The resulting

tree-based algorithms were then applied to the corresponding

IKONOS image tile, and thematic accuracy statistics were

calculated.
3.5. Stream health analyses

Statistical analyses were performed on the impervious

and tree cover maps to determine whether there were

statistically significant differences between small water-

sheds (approximately equivalent to hydrological unit code

HUC 14), as rated by water quality experts into one of four

possible stream resource condition categories. These were

based on countywide baseline stream monitoring data,

including pH, dissolved oxygen, and temperature, among

others (Van Ness, Brown, Haddaway, Marshall, & Jordahl,

1997). This multiagency effort also assessed a number of

biological indicators based on fish and benthic macroinver-

tebrate surveys, and were used to define an index of

biological integrity (IBI) (Stribling, Jessup, White, Boward,

& Hurd, 1998). Of the 296 small watersheds in the county,

245 had been analyzed and represented by a categorical

stream resource quality rating of excellent, good, fair, or

poor. We refer to these as stream health ratings. About one-

third of these (93) was indicated as preliminary assess-

ments, which were analyzed as separate categories from the

completed assessments.

We examined the amount of tree cover within the

entire area of each watershed, as well as within 100-ft

riparian buffers (a size determined by independent buffer

monitoring and restoration activities) to explore whether

there were links to the stream health ratings. The stream

buffer was calculated using a hydrology vector layer

provided by the county. The amount of impervious

surface area within each watershed was also calculated

and expressed, as with tree cover, as a proportion of total

watershed area.

One-way analysis of variance (ANOVA) was used to

assess the relation of each variable to the stream health

ratings. Logistic regression was also used to explore the

relationship of stream health with the mapped variables

(i.e., impervious cover, watershed tree cover, and riparian

buffer tree cover). Logistic regression is a nonlinear and

nonparametric technique that uses maximum likelihood

estimation to predict the odds probability of categorical

dependent variables (in this case stream health rating).

This is unlike ordinary least squares regression estimation

of changes in a numerical dependent variable. The tech-

nique also has the advantage of not assuming normal

distributions or homoskedastic independent variables

(Menard, 1995). It is often used to test binary variables,



Table 4

Accuracy assessment of supervised and unsupervised classifications

Classification Overall

accuracy

j statistic Z statistic

Supervised 0.86 0.72 15.7

Unsupervised 0.83 0.67 13.3
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but also can be applied to multinomial dependents with

more classes, as in our case with ordinal ratings of stream

health.
4. Results

4.1. Tree cover

The extent of the tree cover classifications derived using

the supervised and unsupervised approaches is summarized

in Table 3. The unsupervised classification provided an

estimate of f 5% (67 km2) more forest than the supervised

classification. Accuracy statistics generated for the initial
Fig. 3. IKONOS tree cover map of Montgomery County, MD. Note the forest cove

by clouds.
supervised and unsupervised classifications (Table 4) indi-

cate that both classifications were significantly better than

random, but the differences between the classified maps,

while not statistically significant ( p = 0.07), were substan-

tial enough to convince us to take a different approach (i.e.,

decision trees trained with a large sample of reference

data).

The tree cover map derived from the decision tree

approach (Fig. 3) was spatially detailed and boundaries

between scenes are virtually nonexistent, despite the range

of dates in the IKONOS acquisitions in both years and

seasons. This was due, in large part, to the accuracy of the

decision tree algorithm and the abundance of training data.

Trees occupied nearly 38% of the county (Table 5). Areas

obscured by cloud or cloud shadow, which could not be

correctly classified, comprised 7% of the total county area.

The original forest classification done ca. 1992, and

subsequently manipulated for use as training data for our

mapping, depicted just 28% of the county as forested

(36,849 ha). The primary reason for the difference was the

depiction of a forest/nonforest classification in the natural
r data (from natural features GIS coverage; Fig. 4) used in the areas obscured



Table 5

Classification of county using decision tree classifier

Classified type Area (ha) Percent of county

Tree 49,522 37.7

Nontree 72,268 55.1

Cloud 9478 7.2

Total 131,268 100
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features layer, whereas use of IKONOS permitted us to

capture, in many cases, individual trees. A subset of the

IKONOS tree cover map, along with the reference data

(natural features coverage), shows differences between the

two mapping approaches (Fig. 4), where tree cover is
Fig. 4. IKONOS image detail with classification results. (a) IKONOS imagery; (b

imagery using a decision tree classifier; and (d) IKONOS image with natural featur

trees in (c) compared to the forest cover in (b) and the substantial amount of tree co

Imagingn.)
shown in lighter green compared to the reference forest

coverage (darker green). Note the missing trees in the

subdivisions and between the links of the golf course in

the lower left. It would be possible, if desired, to filter the

tree cover map in such a way as to approximate the forest

cover map (e.g., by retaining only those areas with at least

five of the surrounding eight pixels in a 3� 3 window

classified as tree).

Accuracy statistics based on the independent 600,000

reference data samples reserved for validation show very

high map accuracies, with omission errors of 2.1% and

commission errors of 4.1% (Table 6). Overall classification

accuracy was 97.3% (j = 0.95).
) 1992 natural features coverage of forest areas; (c) tree cover derived from

es coverage and derived tree cover maps overlaid. Note the small patches of

ver missing from the forest area coverage (d). (Includes material from Space



Table 6

Accuracy assessment of tree cover map

Validation

sample

(natural

features)

Classified

(IKONOS)

Number

correct

Producer’s

accuracy

User’s

accuracy

Tree 212,703 217,224 208,351 98.0 95.9

Nontree 287,297 282,577 278,236 96.9 98.5
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4.2. Impervious surfaces

The impervious surface map showed a level of detail

sufficient to map individual houses within subdivisions,

as well as clearly depicting areas where residential

development had occurred since the original planimetric

coverage was produced (Fig. 5). This map of impervious

areas depicts a wide range of materials, some of which

have very different spectral properties (e.g., pavement,

concrete, roof tiles, etc.). Other mapping methods based

on the use of regression trees, rather than classification

trees, permit estimation of imperviousness as a continu-

ous variable (i.e., as a percentage between 0 and 100).

We have used the planimetric reference data to train an

algorithm of continuous subpixel impervious maps based
Fig. 5. Impervious surface areas (yellow) for a portion of Montgomery County

derived from aerial photographs (left), showing changes in residential developmen

is also shown, with the IKONOS panchromatic image as a backdrop. (Includes m
on Landsat imagery (Smith et al., fourthcoming), but the

IKONOS impervious map could be used in place of

planimetric data.

Internal accuracy assessment checks are provided by

the decision tree software, including estimates of misclas-

sification rates for each intermediate and terminal node,

as well as an overall algorithm assessment. Additional

checks of misclassification error were done by cross-

validating the algorithm using 10% of the data samples

in an iterative procedure, cycling through the full data set

(after Friedl, Brodley, & Strahler, 1999). Analysis of

these accuracy measurements for various tree-growing

scenarios strengthened the final algorithm selection and

the overall classification accuracies. Independent statisti-

cal validation using the 140,366 samples reserved from

the image sampling approach demonstrated the ability of

the algorithm to discriminate impervious from nonimper-

vious component materials in the imagery (Table 7).

Omission errors in the impervious map were 9.4% and

commission errors were 10.8%. Overall classification

accuracy was 84.2% (j = 0.36). Despite our efforts to

screen for mislabeled and omitted features (e.g., drive-

ways and sidewalks) in the planimetric data used for

training, some remained present in both the training and
derived from IKONOS imagery (right) compared to planimetric coverage

t since the area was initially mapped (ca. 1993). IKONOS tree cover (green)

aterial from Space Imagingn.)



Table 7

Accuracy assessment of impervious surfaces map

Validation

sample

(planimetric)

Classified

(IKONOS)

Number

correct

Producer’s

accuracy

User’s

accuracy

Impervious 108,730 110,466 98,513 90.6 89.2

Nonimpervious 31,636 29,900 19,683 62.2 65.8

S.J. Goetz et al. / Remote Sensing of E204
validation data samples, which produced somewhat lower

accuracy statistics than expected. We believe, based in

part on results such as those shown in Fig. 5, that the

accuracy of the map is actually higher than that sug-

gested by the interpretation of planimetric data.
Fig. 6. Maps of small watershed aggregated values for (a) stream health rankings,

tree cover (%). (b)– (d) were calculated using the IKONOS-derived maps of thes
4.3. Riparian buffers and stream health

Average tree cover within riparian buffers ranged from

as little as 6% to over 98% by watershed, impervious cover

within the watersheds ranged from 0% to 43%, and total

tree cover (both inside and outside buffers) ranged between

6% and 94%. This range of observations was more than

sufficient to detect the sensitivity of the stream health to

buffer quality. Differences between watersheds were also

visually evident in map comparisons for these same

variables (Fig. 6), as well as in the statistics derived for

each rating category (Table 8 and Fig. 7). ANOVA showed

significant differences between watersheds with different

nvironment 88 (2003) 195–208
(b) impervious surface cover (%), (c) tree cover (%), and (d) riparian buffer

e land cover variables.



Fig. 7. Stream health rankings in relation to (a) impervious surface cover,

(b) watershed tree cover, and (c) riparian buffer tree cover, each derived

from the IKONOS image data.
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amounts of impervious surface area, tree cover, and ripar-

ian tree buffers. Variance ratios (F statistics) were 42.1,

16.3, and 15.0, respectively, all significant at p< 0.001

(N = 245). Streams with excellent ratings had significantly

lower impervious cover and higher tree cover, both within

the watershed and riparian buffers, than streams rated

good, fair, or poor. This trend continued progressively

through each rating category, with increasing average

impervious area and decreasing tree cover as stream health

decreased. All pairwise comparisons confirmed statistically

significant differences ( p < 0.001) between stream rating

categories. There were no substantial differences between

those streams with preliminary assessments and those with

completed assessments, except in the case of those rated

excellent (n = 32) versus preliminary excellent (n = 6), but

this was likely a result of the small sample size of the

latter.

The goodness of fit test of Hosmer and Lemeshow

(1989) failed to reject the null hypothesis of no difference

between the observed and model-predicted values of stream

health; thus, the multivariate model was an adequate pre-

dictor of stream health rating. There is no variance-

explained statistic in logistic regression when the dependent

variable is categorical, but reduction in residual deviance

from the null model was highly significant (v2 = 33.1,

p < 0.001). There was, however, multicollinearity among

variables in the regression. Across watersheds, the extent of

tree cover both within and outside of the 100-ft buffer was

positively correlated with each other (r = 0.71), so the

properties of the 100-ft buffer were not independent of

the surrounding land cover. Impervious area and total tree

cover were inversely correlated (r =� 0.55), as were imper-

vious area and tree buffers (r =� 0.43), but these relation-

ships were reduced in agricultural areas, which had both

low tree and impervious cover. As implied by the ANOVA,

the individual independent variables in the logistic regres-

sion were each statistically significant, and stepwise inclu-

sion tests revealed that impervious cover was the primary

predictive variable, followed by tree cover within the

buffers, and then total tree cover. Residual deviance was

significantly reduced when riparian buffers were added to a

model based on impervious surfaces alone, but subsequent

addition of total watershed tree cover did not further

contribute to model significance. The results suggest that

guidelines for excellent stream health rating would be no

more than 6% impervious with at least 65% forested
Table 8

Small watershed sample size and average statistics by stream health rating

category

Stream health

rating

n Area

(km2)

Impervious

(%)

Tree

cover (%)

Buffered

(%)

Excellent 38 272 3.6 50.6 76.8

Good 81 658 4.9 44.6 71.3

Fair 76 451 13.9 37.0 63.2

Poor 50 356 19.5 29.6 56.3
buffers, and no more than 10% impervious with at least

60% buffered for a rating of good. These values would

clearly be affected by the landscape configuration of buffers

in relation to impervious areas, and by mitigation measures

like sediment retention ponds.
5. Discussion

5.1. Mapping applications

Land cover classification in the study region using

IKONOS imagery with traditional supervised and unsu-

pervised approaches produced substantially different maps

and, for example, tree cover estimates. There were several

factors that impacted the classifications, including the

timing of data acquisition (thus phenological stage),

associated viewing and atmospheric conditions, the qual-

ity of training data (in the case of supervised classifica-

tion), and insufficient discrimination resulting from

limited IKONOS spectral bands. Some of the more

pronounced classification errors were between wet agri-

cultural fields, dense forests, and shadows. For example,

spring small grains (wheat, barley, and rye) and hay

(alfalfa and grasses) had emerged in agricultural fields,

which produced a similar spectral response as deciduous

trees in partial leaf flush. In other areas, the visibility of

the forest floor through the tree canopy produced spectral

responses similar to residential areas. Shadows were also

an especially important consideration with the use of this

high spatial resolution imagery, particularly shadowing

within the forest canopy from adjacent trees. Some of

these issues can be reduced through the use of multi-

temporal imagery, but this would be logistically difficult
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to accomplish in many areas, and cost-prohibitive for

most applications using IKONOS.

In order to reduce the impact of some of these issues,

the decision tree classification approach we adopted made

use of a large number of reference (training) data for the

study area. The resulting classification reinforced the

considerations noted above regarding the use of IKONOS

imagery for vegetation mapping. Two classification issues

were especially problematic, each dependent on the timing

of scene acquisition. In the early spring images (Panels 4

and 7) (see Table 1 and Fig. 1), the primary source of

classification error was confusion between mature decidu-

ous forests and bare ground areas such as untilled agri-

cultural or partially vegetated abandoned areas. In these

scenes, mature forests had just begun to leaf out, and

undergrowth, bare ground, and litter beneath the trees

were spectrally similar to agricultural fields with crop

residue still in place from no-till farming practices. In

the spring and early summer images (Panels 1–3 and 5),

the primary confusion occurred between active agricultural

fields and deciduous trees. Despite these issues, we were

able to achieve accurate maps of tree and impervious

cover.

Although the above points are not unique to IKONOS

imagery, they are accentuated by the high spatial resolu-

tion relative to other imaging sensors such as Landsat

TM. In the case of the early season deciduous forest, the

4-m IKONOS resolution included data in the intercanopy

space, whereas with TM, the pixels include a mixture of

canopy and higher biomass woody stems, generally

producing higher NDVI values. In the case of the leaf-

on scenes, the high vegetation index values of actively

growing agricultural fields appeared spectrally similar to

that of the dense deciduous tree canopy. This was partly

due to greater spatial variability in IKONOS scene

elements. For example, a single tree may be contained

within one TM pixel, whereas the same tree may be

represented by 5 or 10 IKONOS pixels, resulting in

greater variation with foliage density and canopy shape

(see also Blonski, 2001; Goward, Davis, Fleming, Miller,

& Townshend, this issue). Inclusion of the ARVI image

helped reduce this effect, but cannot completely resolve

this unique aspect of high spatial resolution imagery.

Clearly, this ‘‘issue’’ could be considered an advantage

for some applications (e.g., assessments of defoliation or

tree health). There have also been suggestions that high-

resolution imagery could provide information capable of

discriminating different habitat types and complex forest

associations (e.g., oak/hickory versus beech/maple), or

permit mapping of invasive species such as Kudzu. Based

on our results with IKONOS, we believe that these

applications would be difficult to accomplish within

reasonable confidence limits.

The capability of IKONOS to point in a desired

direction adds to the flexibility in acquisition strategies,

and also has implications for the spectral properties of
image components. The relationship between sun, surface,

and sensor for our image acquisitions (Table 1) shows that

Panels 0 and 1 were acquired on the same orbit, but the

sensor azimuth angles differed. As a result, many of the

water bodies in Panel 0 show the effect of sun glint,

whereas those in Panel 1 do not. Similar, albeit less

dramatic, conditions occur in areas that are mostly vege-

tation or impervious cover types. This type of information

can be useful for analyses of bidirection reflectance prop-

erties, but complicates image classification for many appli-

cations, particularly where many IKONOS tiles or

overlapping image panels are required to completely map

a study area.

The work reported here also permitted algorithm devel-

opment for application to other IKONOS imagery in the

region, and significantly allowed for the development of

subpixel mapping techniques using Landsat imagery,

which we will report on in future publications (e.g., Smith

et al., fourthcoming).

5.2. Stream health application

Riparian buffers have been recognized as important

landscape features that provide unique habitat for many

wildlife species (Iverson, Szafoni, Baum, & Cook, 2001),

as well as filtering capabilities for removing nutrient

pollutants from agricultural runoff before they reach water-

ways (Cooper, Gilliam, Daniels, & Robarge, 1987; Cor-

rell, 1997; Lowrance et al., 1997). Traditional approaches

to mapping and monitoring riparian zone vegetation have

relied on photographic interpretation (e.g., Lonard, Judd,

& Desai, 2000), but this is not practical over large areas.

For example, the Chesapeake Bay Program has been

tasked with establishing 2000 miles of forested riparian

buffers by the year 2010, but does not have a practical

methodology to accurately assess current buffer statistics,

let alone monitor new plantings. Landsat data are simply

not of sufficient spatial resolution to adequately map

riparian buffer vegetation within the widely accepted

100-ft (f 30 m) buffer width used as a common reference

for buffer effectiveness.

Our analyses of impervious surfaces and tree cover

within the small watersheds and riparian buffer zones of

Montgomery County provide an example of the capabil-

ities conveyed by consistent mapping over large areas

using IKONOS imagery. A key advantage to the IKO-

NOS-derived maps was the fine spatial resolution that

allowed very-local-scale analysis of riparian buffers, and

statistically meaningful sample populations within the

small watersheds. The results confirm that there are clear

linkages between the land cover within a watershed and

the stream water quality. Specifically, the amount of

impervious surface area within a watershed and tree cover

within riparian buffer zones provided robust indicators of

stream health rating. This suggests that the buffers were

functioning to reduce pollutants and sediments from built
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areas before they entered the waterways. Conversely,

buffers alone were insufficient for protecting waterways

in highly impervious areas or where forest cover outside

buffer zones was low, including agricultural areas that

presumably affected stream health through chemical run-

off. Additional analyses beyond the scope of this paper

are being completed to explore these relationships further,

and to assess the effectiveness of mitigation approaches in

controlled and uncontrolled paired watersheds.

The high-resolution land cover maps that can be derived

from IKONOS imagery and the associated landscape

variables that can be calculated from them (e.g., buffer

configuration) thus provide an important contribution to

these types of resource management applications. In the

case of Montgomery County, these statistics are actively

used to determine whether resources are focused on

watershed preservation (streams of excellent health), pro-

tection (good or excellent health), or restoration (fair or

poor health).
6. Conclusions

Utilizing high spatial resolution imagery can be benefi-

cial to many different resource management applications.

Imagery like IKONOS can aid in the development of a wide

range of mapping and spatial modeling applications, but a

number of issues must be considered with these relatively

new and unique data sets. The issues include (i) program-

matic considerations of the timing of acquisitions to capture

features of interest (e.g., leaf-off for impervious versus leaf-

on for tree cover), as well as timely data acquisition (ours

took 18 months to acquire); (ii) technical considerations,

such as compensation for the effects of object shadowing

resulting from improved resolution of individual scene

elements, and limited spectral resolution and range; and

(iii) economic factors, such as cost per square kilometer

relative to DOQs, and feasibility of consistent repeat

acquisitions. For example, we noted an inability of IKO-

NOS to adequately spectrally discriminate some land cover

types due to high spatial variability within scene elements

resulting from variable illumination and viewing conditions.

Spectral variability within scene objects also contributed to

reduced class type discrimination between more generalized

land cover types (e.g., confusion between deciduous forest

and some agricultural crops).

New sets of interpretation strategies need to be devel-

oped to maximize the information obtained from IKONOS,

while minimizing the problematic issues specific to high

spatial resolution imagery. Our exploration of several such

approaches relevant to resource mapping applications sug-

gests the great practical utility of IKONOS imagery, partic-

ularly for impervious surface, tree cover, and riparian

buffers, all of which are related to stream health. Our results

provided very specific guidelines for predicting stream

health ratings, which allows for targeted and adaptive
protection and restoration management decision making.

Other applications for which the maps are currently being

utilized include resource lands monitoring and acquisition

planning, analyses of habitat connectedness and bird habitat

suitability, and hydrodynamic modeling for mitigation of

stream bank erosion. IKONOS imagery can augment tradi-

tional mapping approaches and, in many cases, may provide

a cost-effective alternative.
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