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Study region: Upper Xingu River Basin, southeastern Amazonia.
Study  focus: This study assessed the influence of land cover changes on evapo-
transpiration and streamflow in small catchments in the Upper Xingu River
Basin  (Mato Grosso state, Brazil). Streamflow was measured in catchments with
uniform  land use for September 1, 2008 to August 31, 2010. We used mod-
els  to simulate evapotranspiration and streamflow for the four most common
land  cover types found in the Upper Xingu: tropical forest, cerrado (savanna),
pasture,  and soybean croplands. We used INLAND to perform single point sim-
ulations  considering tropical rainforest, cerrado and pasturelands, and AgroIBIS
for  croplands.
New hydrological insights for the region: Converting natural vegetation to
agriculture  substantially modifies evapotranspiration and streamflow in small
catchments. Measured mean streamflow in soy catchments was about three
times  greater than that of forest catchments, while the mean annual amplitude
of  flow in soy catchments was more than twice that of forest catchments. Simu-
lated  mean annual evapotranspiration was 39% lower in agricultural ecosystems
(pasture and soybean cropland) than in natural ecosystems (tropical rainforest
and  cerrado). Observed and simulated mean annual streamflows in agricultural
ecosystems  were more than 100% higher than in natural ecosystems. The accu-
racy  of the simulations was improved by using field-measured soil hydraulic
properties.  The inclusion of local measurements of key soil parameters is likely
to  improve hydrological simulations in other tropical regions.
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1. Introduction

The Amazon is the Earth’s largest remaining tropical forest and the location of the largest absolute
extent of tropical forest clearing each year. In the eastern Amazon, the Xingu River Basin has a drainage
area of approximately 500,000 km2, and annual mean discharge of about 8000 m3 s−1, making it the
5th largest tributary of the Amazon. The Xingu headwaters region is located in Mato Grosso state
(Upper Xingu) and the river flows northward for roughly 2000 km before reaching the Amazon River in
Pará state (Fig. 1a). In addition to its large extent, the Xingu Basin is economically and environmentally
important. The third-largest hydroelectric dam complex in the world, the Belo Monte Dam, is currently
under construction at Altamira, near the confluence of the Xingu and the Amazon River. At the same
time, the Xingu Basin contains one of the world’s largest mosaics of protected areas and indigenous
reserves, which protect indigenous cultures and 280,000 km2 of tropical forest.

High deforestation rates and rapid changes in the agricultural landscape have occurred in the Upper
Xingu outside of the indigenous reserve, with about 35% of the original forest converted to pasture and
croplands (especially soybeans) by 2010 (Leite et al., 2011; Macedo et al., 2012; Morton et al., 2006).
These transitions from native forests and savannas to pastures or croplands drive widespread changes
in vegetation that have the potential to modify the hydroclimatology of the Upper Xingu (Coe et al.,
2013; Panday et al., 2015).

The classic study by Bosch and Hewlett (1982) quantified how reduction of vegetation cover
increases average annual discharge. This has been confirmed for various ecosystems by Andréassian
(2004), Brown et al. (2005), Bruijnzeel (1990) and Sahin and Hall (1996). Recently, Hayhoe et al. (2011)
conducted a paired catchment experiment at the Tanguro Farm in the Upper Xingu (Fig. 1a) to exam-
ine how the conversion of tropical forests to soybeans influences the seasonality of streamflow and

Fig. 1. Map  of the study area. (a) Location of the Xingu River Basin and Tanguro Farm within the Amazon. (b) Inset depicting the
location of the study catchments within Tanguro Farm. First-order catchments are labeled with a 1; second-order catchments
are  labeled with 2. The star indicates the location of the automatic weather station (AWS).
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to quantify the discharge of small catchments under these two  types of vegetation cover. The authors
found that water yield in soybean catchments was approximately fourfold that of forest catchments
and that stormflows contributed less than 13% of the annual discharge, while baseflow accounted for
nearly 90% of annual streamflow in both forest and soybean catchments.

The Upper Xingu is an ideal study area for examining the effects of land cover change on hydrology
because it spans the transition between evergreen tropical forest in the north and cerrado (Brazil-
ian savanna) in the south. This transition zone provides a unique opportunity to study four types of
land cover (tropical forest, cerrado, pasture and soybean) under similar climatological and edaphic
conditions.

Land surface models (LSM) have been used to simulate the behavior of the hydrological system at
various scales in central Brazil (Coe et al., 2011; Panday et al., 2015; Pongratz et al., 2006) and Ama-
zonia (Coe et al., 2009; Costa and Foley, 1997). These models describe the flow of water between soil,
vegetation, and atmosphere and allow researchers to investigate land surface processes (evapotrans-
piration, runoff and drainage), as well as the historical and potential future consequences of climate
and deforestation for the regional water balance.

Since the first LSM was developed in the late 1960s, LSMs have been iteratively refined and they
can be classified into generations according to the processes included, as described by Sellers et al.
(1997). After the second generation, several important hydrological processes were included, such as
biophysical control of evapotranspiration, precipitation interception, and soil moistures availability.
Third- and fourth-generation models include improvements in carbon assimilation and dynamic veg-
etation, respectively, and are the most common models used in previous land use change studies in
Brazil.

Costa and Foley (1997) used a modified version of the Land Surface Transfer Scheme (LSX; third-
generation model; Pollard and Thompson, 1995) to analyze the water balance in the Amazon Basin.
This study demonstrated that forest clearing decreases annual evapotranspiration by 12% in the Ama-
zon Basin. Pongratz et al. (2006) used the Simple Biosphere Model (SiB2; third-generation model;
Sellers et al., 1996a,b), to study the surface energy and water balance in Mato Grosso. Their results
indicated that forest clearing increases the daily temperature range and that conversion of evergreen
forest to C3 croplands decreases the latent heat flux by 21% during the wet  season. The Integrated
Biosphere Simulator (IBIS; Foley et al., 1996; Kucharik et al., 2000), a fourth-generation model, has
been extensively used to study the influence of deforestation on the discharge of the Amazon River
and its tributaries (Coe et al., 2011, 2009; Lima et al., 2014; Panday et al., 2015; Stickler et al., 2013).
The authors found that large-scale historical deforestation has increased discharge by as much as 20%
in large watersheds of the southeastern Amazon.

Independent of the model chosen, the accuracy of simulated results is fundamentally dependent
on the parameters chosen. Parameters representing soil hydrological properties such as porosity, field
capacity, wilting point and saturated hydraulic conductivity are particularly important because they
influence soil water retention, the amount of water available for evapotranspiration (Cuenca et al.,
1996; Delire et al., 1997; Marthews et al., 2014), and the resulting water cycle.

This study presents a combination of field measurements and model simulation results for the
Upper Xingu focused around three main goals: (1) analysis of water yield data collected in tropi-
cal forest and soybean catchments to understand the effects of land cover change on regional water
dynamics; (2) determination of the best set of soil hydrological properties for simulating the partition-
ing of annual precipitation into evapotranspiration and discharge in forest and soybean catchments;
and (3) investigation of the differences in annual evapotranspiration and streamflow in tropical forest,
cerrado, pasture and soybean catchments in the Upper Xingu.

2. Materials and methods

2.1. Site description

The study is centered on the 80,000 ha Tanguro Farm, a large soybean farm located in the Upper
Xingu Basin, in Mato Grosso, Brazil (Fig. 1). This region is located in the Brazilian Central Plateau,
characterized by a generally flat topography and dominated by oxisols with a mean soil texture of
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55% sand, 2% silt, and 43% clay (Hayhoe et al., 2011; Scheffler et al., 2011). Tanguro was originally
covered by transitional tropical forests, with an average canopy height of 20 m and relatively low
species diversity compared to the wetter tropical forests occurring further north and west (Balch et al.,
2008). During the 1980s, about 32,000 ha were cleared and converted to pasture grasses, consisting
mostly of Brachiaria sp. (Scheffler et al., 2011). Between 2004 and 2008, these pasturelands were
converted to mechanized soy production. This land use history is typical of much of the Upper Xingu
region.

During the study period (2007–2010), soybean was  planted near the onset of the rainy season
(usually in November). In general, in the first year after conversion, only a single crop of soybeans was
planted in the field (without crop rotation), and the soil remained exposed between growing seasons.
After the first year, typically a single soybean crop was  planted in November (using a no-till planting
system) and harvested around March, when a cover crop (usually millet) was  planted to protect the
soils between growing seasons.

2.2. Discharge and meteorological data

Discharge was measured in twelve headwater catchments located entirely on the Tanguro Farm
from September 2007 to December 2010. The study catchments included seven soybean (six first-order
and one second-order) and five forested (four first-order and one second-order) streams. Because ten
of these catchments were also studied by Hayhoe et al. (2011), we named them following Hayhoe
et al. (2011) to facilitate comparison of results between these studies (Fig. 1b). Our study differs from
Hayhoe et al. (2011) because it includes two additional catchments (one in forest and one in soybean),
an 18-month longer time series, and updated rating curves.

Discharge was estimated based on hourly water level data, following the methods described in
Hayhoe et al. (2011). Briefly, each basin was gauged with a staff gauge and Onset HOBO U20 Water
Level data logger, which monitored hourly barometric pressure. Pressure data was converted to water
level (depth) using reference air pressure data (logged with an identical unit in a nearby field labo-
ratory) and calibrated using the permanent staff gauges at each site. Finally, the entire water level
time series, including the catchments and time periods reported by Hayhoe et al. (2011), was  con-
verted to discharge using updated rating curves. The depth-to-discharge relationships were developed
for each catchment based on periodic discharge measurements using a Marsh McBirney Flo-Mate
2000 electromagnetic flow meter. Catchment boundaries were delineated based on vegetation-
corrected Shuttle Radar Topography Mission (SRTM) data, using standard hydrology tools in ESRI
ArcGIS 10.2.

Hourly temperature, humidity, wind speed, rainfall, and incoming solar radiation data were mea-
sured by an automatic weather station (AWS, Fig. 1b) located inside the Tanguro Farm (Latitude:
13◦37′16′′ S; Longitude: 52◦22′55,68′′ W;  altitude: 358 m),  between January 2007 and December 2011.
Where necessary (typically before September 2008) we used the PERSIANN (Precipitation Estimation
from Remotely Sensed Information using Artifical Neural Networks;  Hsu et al., 1997; Sorooshian and Hsu,
2000) 0.25◦ global precipitation dataset to fill gaps in the rainfall time series. Missing values for the
other variables were filled following the same behavior of the previous adjacent data points.

Incident longwave radiation (Lin) is an input variable required to run the INLAND and Agro-IBIS
models (described in Section 2.3). Although it was not measured directly by the Tanguro AWS, Lin can
be estimated from other measured meteorological variables using previously published equations
(Brutsaert, 1975; Idso and Jackson, 1969; Idso, 1981; Prata, 1996; Satterlund, 1979), which are only
valid for clear sky conditions. Here, we estimated Lin for all days of the simulation period according to
the empirical equation proposed by Idso (1981), which uses the Stefan–Boltzmann constant (�), air
temperature (T) in Kelvin and water vapor pressure (e) in kPa:

Lin = [0.7 + 5.95 × 10−5(e exp(1500/T))]�T4

We  assume that the errors associated with Lin estimation influenced all simulations equally,
enabling analysis of the relative differences in the behavior of the simulated water balance. We
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chose the Idso (1981) equation because it showed the best agreement with measurements of incident
longwave radiation in pasture and forest sites in southwestern Amazonia (Aguiar et al., 2011).

2.3. Numerical experiment

The Integrated Model of Land Surface Processes (INLAND; Costa et al., manuscript in preparation)
is a fifth-generation model that has been developed by Brazilian researchers as part of the Brazil-
ian Earth System Model project. This model is an evolution of the IBIS. One of the main goals of the
INLAND project is to better represent biomes and important processes in Brazil (such as agriculture).
To include agriculture, the Dynamic Model of Agroecosystems (AgroIBIS) is being incorporated into
INLAND. AgroIBIS is a modified version of IBIS capable of simulating phenological and physiologi-
cal characteristics of crops (Kucharik and Twine, 2007; Kucharik, 2003). Because the integration of
these two models was underway when we performed the simulations in this study, we  elected to
use INLAND version 1.0 and AgroIBIS separately. Because both models are modifications of IBIS, they
share most water balance equations and their results are directly comparable in the context applied
here.

These models simulate the exchanges of energy, water, carbon and momentum in the
soil–vegetation–atmosphere system. They represent two layers of vegetation with 12 plant functional
types, as well as six soil layers of variable thickness, representing a total of 8 m in depth. Water infil-
tration in soil is modeled using Darcy’s equation and soil moisture is based on the flow of Richards’s
equation. Plant transpiration is governed by stomatal conductance coupled to photosynthesis (Ball
et al., 1987). Total evapotranspiration is the sum of bare soil evaporation, plant transpiration and evap-
oration from precipitation intercepted by the canopy (Pollard and Thompson, 1995). Water uptake by
plants is a function of atmospheric demand, soil physical properties, root distribution and water in
the soil profile (Kucharik et al., 2000). Finally, surface and subsurface runoff are explicitly simulated
as a function of the water not evapotranspired to the atmosphere (i.e. the difference between rainfall
and total evapotranspiration), soil characteristics, vegetation and climate.

We  performed single point simulations for tropical forest, cerrado, and pasture land uses in the
INLAND model and soybean cropland in the AgroIBIS model. Although we ran the models for the period
from January 1, 2007 to December 31, 2011, we analyzed simulation results only for two  hydrological
years (September 1, 2008 to August, 31 2010). Hourly meteorological data from the AWS  at Tanguro
Farm served as model input data and we considered it representative for all catchments in the study.
We used fixed vegetation for the natural ecosystems (cerrado and forest) and pastureland simulations.
We specified November 1st as the planting date for single-cropped soybeans and assumed that soils
remained exposed in the periods between plantings. We  used fixed concentrations of CO2 at 390 ppm
in all simulations.

2.4. Soil hydrological properties

Soil properties in INLAND and AgroIBIS are based on soil texture, and the soil at Tanguro Farm is
classified as sandy clay according to the USDA soil texture triangle. Here, we  considered three potential
data sources to describe the hydrological properties of sandy clay soils: the mean values described
by Campbell and Norman (1998), the pedotransfer functions proposed by Cosby et al. (1984) and
observed data for Tanguro Farm described by Scheffler et al. (2011).

INLAND and AgroIBIS currently use values for porosity (�s), field capacity (�fc), wilting point
(�wp), Campbell‘s “b” exponent (b), air entry potential (� ad) and saturated hydraulic conductivity
(KS), as recommended by Campbell and Norman (1998). Recently, however, hydrologic properties of
soils estimated using pedotransfer functions based on soil texture, proposed by Cosby et al. (1984),
have been used by the Large-Scale Biosphere-Atmosphere Experiment in Amazonia Data Model Inter-
comparison Project (LBA-DMIP; De Gonç alves et al., 2013). In addition, Scheffler et al. (2011) measured
in situ values of KS under forest, pasture and soybean covers on Tanguro Farm.

For each land cover (forest, cerrado, pasture, and soybean), we assessed four sets of soil hydraulic
parameters to identify the combination that provides the smallest difference between simulated data
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Table 1
Soil sand-clay parameters used for simulations A (all parameters from Cosby et al., 1984), B (KS from Scheffler et al., 2011; other
parameters from Cosby et al., 1984), C (all parameters from Campbell and Norman, 1998) and D (KS from Scheffler et al., 2011;
other parameters from Campbell and Norman, 1998). �s,  porosity (m3 m−3); �fc, field capacity (m3 m−3); �wp, wilting point
(m3 m−3); b, Campbell’s “b” exponent; � ad, air entry potential (mH2O); and KS, saturated hydraulic conductivity (m s−1).

Simulation Land Cover �s �fc �wp b � ad KS

A All 0.411 0.284 0.194 9.7 0.18 4.638 × 10−6

B Forest/Cerrado 0.411 0.242 0.194 9.7 0.18 1.565 × 10−4

Pasture 0.411 0.262 0.194 9.7 0.18 2.781 × 10−5

Soy 0.411 0.260 0.194 9.7 0.18 3.189 × 10−5

C All 0.430 0.339 0.239 6.0 0.29 3.333 × 10−7

D Forest/Cerrado 0.430 0.339 0.239 6.0 0.29 1.565 × 10−4

Pasture 0.430 0.339 0.239 6.0 0.29 2.781 × 10−5

Soy 0.430 0.339 0.239 6.0 0.29 3.189 × 10−5

and mean observed values for forest and soybeans (Table 1). The four resulting simulation scenarios
were:

A. All soil hydraulic parameters estimated using Cosby et al. (1984) equations;
B. KS measured at the Tanguro Farm (Scheffler et al., 2011) and other parameters estimated using

Cosby et al. (1984) equations;
C. All soil hydraulic parameters recommended by Campbell and Norman (1998);
D. KS measured at the Tanguro Farm (Scheffler et al., 2011) and other parameters recommended by

Campbell and Norman (1998).

We assume identical KS for forest and cerrado (Table 1), since both are natural ecosystems.

3. Results

3.1. Observed data

Observed mean annual streamflow from September 2008 to August 2010 was  approximately
three times higher in soybean catchments than in forest catchments (Table 2). Average total
observed runoff was 534.8 ± 214.7 mm yr−1 for soybean catchments (95% confidence interval (CI),
320.1–749.5 mm  yr−1) and 194.6 ± 144.1 mm yr−1 for forest catchments (CI, 50.5–338.7 mm yr−1).

Table 2
Average observed total runoff (Robs), runoff coefficient (C) and area of six soy catchments and four forest catchments in Tanguro
Farm. Soy 1 and Forest 1 are first order catchments; Soy 2 and Forest 2 are second order catchments. Catchments that overlap
with  Hayhoe et al. (2011) are indicated with an asterisk.

Land cover Robs (mm  yr−1) C Drainage area (km2)

Soy 1a* 470.9 0.36 3.7
Soy  1b* 994.6 0.76 2.3
Soy  1c* 457.3 0.35 2.5
Soy  1d* 441.8 0.34 4.1
Soy  1e 125.1 0.10 5.6
Soy  2* 719.0 0.55 27.1

Mean  534.8 0.41 –
Forest 1a* 238.1 0.18 8.4
Forest 1b* 45.8 0.04 12.7
Forest 1c* 78.5 0.06 5.2
Forest 2 415.9 0.32 15.2
Mean  194.6 0.15 –
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Fig. 2. Precipitation and mean daily total runoff for forest and soybean catchments in the Upper Xingu (time period September
2008 and August 2010).

During this period, the average rainfall was  1301 mm yr−1. The ratio between the average annual
total runoff and average annual rainfall (runoff coefficient, C) was  0.41 (standard deviation, SD = 0.20)
in soybean catchments and 0.15 (SD = 0.11) in forest catchments (Table 2).

The dry and wet seasons were well separated, with the wet  season occurring between September
and April and the dry season between May  and August (Fig. 2). Mean precipitation during the wet
and dry months was 5.9 and 0.1 mm day−1, respectively. The average maximum streamflows in the
two hydrological years was 1.8 mm day−1 for soybean catchments and 0.6 mm day−1 for forest catch-
ments. The mean annual amplitude of the flow (the mean difference between maximum and minimum
streamflows) in soybean catchments (0.7 mm day−1) was more than twice that of forest catchments
(0.3 mm day−1).

3.2. Simulated results

The difference between mean total precipitation (Fig. 3 dashed line) and the sum of the three
simulated components of the water balance (evapotranspiration, surface runoff and subsurface runoff)
was the mean net change in groundwater storage (Fig. 3). The mean annual groundwater storage term
was negative for all simulated sets of parameters and land covers, except for soybeans in simulation C.
Negative groundwater storage meant that there was a net removal of water stored in the soil during
the analyzed period. The simulated annual discharge (total runoff) was the sum of simulated annual
surface and subsurface runoffs.

Simulation B predicted the smallest difference between simulated data and the mean observed
values for both forest and soybeans (Fig. 4). Moreover, for soybean catchments, simulations A, B, and C
predict simulated total runoff within the range of observed discharge, but only simulation B predicts
total runoff within the observed range for forest catchments. Therefore, simulation B was  used to
analyze the effect of land cover change on evapotranspiration and streamflow in the Upper Xingu
Basin. Unless otherwise noted, henceforth all simulated results refer to simulation B.

Simulated evapotranspiration was 39% lower (Table 3) in agricultural ecosystems (pasture and
soybean) compared with natural ecosystems (tropical forest and cerrado). Simulated mean annual
total runoff for soybean cover was twice that of forest cover. Considering the four types of land use,
the mean annual simulated streamflow in agricultural ecosystems (pasture and soybeans) was 114%
higher than in natural ecosystems (forest and cerrado).
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Fig. 3. Simulated water balance with different soil hydraulic parameters. The difference between mean total precipitation
(1301  mm yr−1, dashed line) and the sum of the three simulated components of the water balance is the mean net change in
groundwater storage. Simulations with (A) all parameters estimated using Cosby et al. (1984); (B) KS measured at Tanguro Farm
by  Scheffler et al. (2011) and the other parameters estimated using Cosby et al. (1984); (C) the values of Campbell and Norman
(1998) were used for all parameters; and (D) KS measured at Tanguro Farm by Scheffler et al. (2011) and Campbell and Norman
(1998) values in the other parameters.
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Fig. 4. Mean annual discharges observed (Robs), mean of Robs (R̄) for each land cover, and mean annual discharge simulated (Rs)
for  each land cover and four sets of soil hydraulic parameters for sandy clay soil. Small letters define catchments with forest or
soy  (Fig. 1 and Table 1) and capital letters define the different set of soil hydraulic parameters. Error bars indicate the confidence
interval at 95%.

Table 3
Water balance predicted by simulation B (KS from Scheffler et al., 2011; other parameters from Cosby et al., 1984) for the period
from September 2008 and August 2010 (mm  yr−1). The mean precipitation in this period was  1301 mm yr−1.

Evapotranspiration Surface runoff Subsurface runoff Total runoff Net change in
groundwater storage

Forest 1024.7 0.2 322.3 322.5 −46.7
Cerrado 1009.5 0.2 324.9 325.1 −34.1
Mean 1017.1 0.2 323.6 323.8 −40.4
Pasture 567.3 5.5 744.2 749.7 −16.6
Soy 678.5 43.3 594.3 637.6 −15.6
Mean 622.9 24.4 669.3 693.7 −16.1

Simulated surface runoff was greater in agricultural ecosystems than in natural ecosystems
(Table 3). Subsurface runoff represented 99% of the total runoff in the simulation with forest cover,
compared to 93% for soybean cover. Considering all simulated land uses, subsurface runoff repre-
sented 96% of total runoff in agricultural ecosystems and approximately 100% of total runoff in natural
ecosystems. Although the simulated surface runoff was slightly greater in agricultural ecosystems
than in natural ecosystems, most of the increase in mean annual discharge was due to an increase in
groundwater flow. The runoff coefficients for forest, cerrado, pasture and soybeans catchments were
0.25, 0.25, 0.58 and 0.49, respectively.

4. Discussion

By combining field measurements in paired catchments with numerical modeling, our results
provide insights into how the conversion of tropical forest or cerrado to pasture or soybean alters the
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partitioning of rainfall into evapotranspiration and streamflow. We  found that replacement of native
vegetation with other land covers substantially increased water yield, which supports the results of
several previous studies (Andréassian, 2004; Bosch and Hewlett, 1982; Brown et al., 2005; Bruijnzeel,
1990; Hayhoe et al., 2011; Sahin and Hall, 1996; Tomasella et al., 2009). Mean annual observed stream-
flow was three times larger in soybean catchments than in forest catchments, primarily because of
decreased evapotranspiration. The lower leaf area index (LAI), shallower root depth, higher albedo,
lower surface roughness and lower transfer of energy and momentum all contribute to reducing evapo-
transpiration in soybean areas (Bonan et al., 1992; Costa and Foley, 2000; Costa et al., 2007; Pongratz
et al., 2006; Sampaio et al., 2007).

The variability in observed discharge among Upper Xingu catchments of comparable land use can-
not be fully explained by stream slope or catchment area (Hayhoe et al., 2011). Based on our simulated
results, which examined the impact of different KS on forest discharge, and field measurements of dis-
charge in the Forest 1a and 1b catchments, we conclude that soil properties alone cannot explain
the discharge variability between sites. Total simulated runoff decreased exponentially with increas-
ing KS in forest sites, converging to roughly 300 mm  yr−1. A simulation using KS 100-times smaller
than that measured in situ resulted in a simulated discharge only twice as high that under simula-
tion B conditions. Although these results suggest that flow should vary significantly with changes
in KS, Scheffler et al. (2011) reported no significant difference in KS at the Forest 1a and 1b catch-
ments. Despite similar soil hydraulic characteristics, Forest 1a discharge was fivefold that of Forest
1b (Table 2).

Having eliminated KS, stream slope, and catchment area as major contributing factors, we con-
clude that other factors account for the large difference in discharge. Possible causes of this variability
include measurement errors, underflow beneath the monitored streams and flow between the basins
(Hayhoe et al., 2011). This phenomenon is possible in flat landscapes with deep well-drained soils
(Bruijnzeel, 1990) like those found in the Upper Xingu, but we  were unable to refute or confirm it in this
study.

The partitioning of total runoff into surface and sub-surface components was  considerably altered
with measured KS. The Campbell and Norman (1998) and Cosby et al. (1984) pedotransfer equa-
tions underestimate KS compared to the field measurements reported by Scheffler et al. (2011). This
is likely because these equations were developed to predict temperate soil properties and poorly
represent the behavior of tropical soils. Unlike temperate soils, tropical oxisols are highly leached,
are predominantly 1:1 clay minerals and have high concentrations of aluminum and iron oxides
(Barros and van Lier, 2014). Aluminum and iron oxides are the primary stabilizing agents for soil
aggregates and well-aggregated soils are well-drained. Because the two indirect sources of soil prop-
erties data used in this study did not represent the well-drained sandy clay soils typical of our
study area, the simulations relying exclusively on using only Campbell and Norman (1998) or Cosby
et al. (1984) resulted in a greater difference between simulated data and observed runoff, com-
pared with simulations that partially included field measurements of soil characteristics. Simulation
B included the measured KS and better represented the water balance components for the Upper
Xingu.

In simulation B, evapotranspiration was 1025 mm yr−1 for forest and 1010 mm yr−1 cerrado. The
forests at Tanguro Ranch occur at the transition between the Cerrado and Amazon biomes and are
characterized by shorter stature and lower LAI than the dense forests found in northern Amazonia
(Balch et al., 2008). Studies of similar transitional forests in Sinop (Costa et al., 2010; Vourlitis et al.,
2008, 2002) estimated evapotranspiration rates ranging from 822 to 1300 mm  yr−1. For dense cer-
rado physiognomies (cerradão) and cerrado sensu stricto,  tree-dominant savannahs expected along the
Amazon-Cerrado ecotone, previous studies suggest evapotranspiration ranging from approximately
800 to 1442 mm yr−1 (Giambelluca et al., 2009; Oliveira et al., 2005). Our simulated evapotranspiration
for both forest and cerrado was well within the range of those previously reported in the literature.

Our simulation results indicate that evapotranspiration was  similar in forest and cerrado catch-
ments. This is consistent with previous findings, which suggest that transitional forests and cerrados
can have similar evapotranspiration if surface soil water availability is sufficient (Rodrigues et al.,
2014). Tropical forests and cerrados thus exhibit similar evapotranspiration in transitional areas, given
that both were constrained by the same climate and water availability during our simulations.
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Fig. 5. Observed precipitation and simulated evapotranspiration, surface runoff and sub-surface runoff seasonality for (a)
tropical forest, (b) cerrado, (c) pasture, and (d) soybeans in mm month-1. The difference between monthly precipitation (solid
line)  and the sum of the three simulated components of the water balance (vertical bars) is equal to the net change in soil water
storage (positive numbers represent soil water recharge; negative numbers represent soil water depletion).
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Our simulated pasture evapotranspiration (567 mm yr−1) was  lower than values previously
reported in the literature for this region, which range from 822 to 982 mm yr−1 for Mato Grosso
(Lathuillière et al., 2012; Priante-Filho et al., 2004). Measured evapotranspiration for soybean areas
in Mato Grosso were unavailable, but Lathuillière et al. (2012) conducted an indirect measurement
experiment with remote sensing products and crop modeling. Their estimates suggest that mean soy-
bean evapotranspiration in Mato Grosso (540 mm yr−1 or 4.4 mm day−1, over the growing season)
was lower than our simulated evapotranspiration for soybean (679 mm  yr−1). Our simulated soybean
evapotranspiration may  be higher than that of Lathuillière et al. (2012) because we included transpi-
ration by soybeans during the growing season and evaporation throughout the year. Our simulated
pasture and soybean evapotranspiration corresponded to 44% and 52%, respectively, of the mean
precipitation.

Simulated evapotranspiration in agricultural ecosystems (pasture and soybean catchments) was
about 39% lower than in natural ecosystems (forest and cerrado catchments). This is comparable to
observed evapotranspiration reductions of about 36% following deforestation and pasture establish-
ment in an area of Maranhão state (Oliveira et al., 2014).

Between April and August each year, the amount of precipitation was  lower than the sum of evapo-
transpiration and total runoff (Fig. 5), indicating that vegetation was  under water stress during this
period. Unlike wet equatorial forests, where solar radiation availability is an important factor con-
trolling evapotranspiration, seasonally dry tropical forests are largely controlled by seasonal trends in
rainfall and the biotic response of plants to water stress (Costa et al., 2010; Vourlitis et al., 2008). The
dry season was an equally important control on evapotranspiration in forest and cerrado ecosystems,
consistent with previous studies (Biudes et al., 2015; Da Rocha et al., 2009; Rodrigues et al., 2014;
Vourlitis et al., 2014). Evapotranspiration in perennial vegetation (forest, cerrado, and pasture) was
somewhat greater during the dry season than the wet  season, in response to the larger vapor pressure
deficit, as previously reported by Costa et al. (2010). For soybeans, the growing season from November
to February had greater evapotranspiration than the dry season.

Both observed and simulated results agree that the replacement of natural vegetation by agriculture
increases streamflow by more than 100% in the Upper Xingu. Simulated mean annual total runoff for
soybeans was  twice that of forests (638 and 323 mm yr−1).

Simulated subsurface runoff was 96% of annual total runoff in agricultural ecosystems and nearly
100% of annual total runoff in the natural ecosystems. These findings were consistent with the results
reported by Hayhoe et al. (2011), who found that baseflow represented 96% of the discharge in for-
est and 94% of the discharge in soybean catchments in the Upper Xingu. However, the simulated
subsurface runoff was highly seasonal, and reduced to near zero during the dry season (Fig. 5).

Agricultural ecosystems are generally expected to have larger surface runoff than natural ecosys-
tems, which may  cause environmental problems such as erosion and the loss of soil nutrients. However,
the soil infiltrability and saturated hydraulic conductivity in this region were very high even after con-
version of the landscape to agriculture. As a result, large soil infiltration and groundwater recharge –
not increases in surface runoff – were the primary factor accounting for observed increases in total
runoff in agricultural ecosystems. It is unclear whether other environmental problems may  result from
these increases in surface runoff. As noted by Neill et al. (2013), we  do not yet know the full extent of
areas with erosion nor the potential for increased erosion if a prolonged period of agriculture were to
increase soil compaction in this region.

5. Conclusions

Observed and simulated results show that converting natural vegetation to agriculture sub-
stantially modifies the water balance components in small catchments in the Upper Xingu. Field
observations indicated that mean streamflow in soy catchments was about three times greater than
that of forest catchments, while the mean annual amplitude of observed flow was more than two
times larger in soy than in forest areas.

Modeled results showed about 40% less evapotranspiration in agricultural ecosystems (pasture and
soybean catchments) than in natural ecosystems (forest and cerrado catchments), whereas average
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total discharge was about 100% higher in agricultural ecosystems than in natural ecosystems in the
Upper Xingu.

Our study is a first step toward understanding the evapotranspiration and streamflow for four
types of land cover in the study region. Future studies can investigate whether the consequences
of increased water yield in headwater catchments can be detected in higher-order watersheds and
how these cumulative disturbances might compromise the economic and environmental health of the
Xingu River Basin. In situ data on soil parameters was  essential to simulating the hydrologic behavior
of this region. Therefore, future research should also focus on improving estimates of soil hydraulic
properties in tropical soils, given the importance of these soil parameters for accurately simulating
the water balance.
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