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Abstract: Estimating forest area at a national scale within the United Nations program of 
Reducing Emissions from Deforestation and Forest Degradation (REDD) is primarily 
based on land cover information using remote sensing technologies. Timely delivery for a 
country of a size like Mexico can only be achieved in a standardized and cost-effective 
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manner by automatic image classification. This paper describes the operational land cover 
monitoring system for Mexico. It utilizes national-scale cartographic reference data, all 
available Landsat satellite imagery, and field inventory data for validation. Seven annual 
national land cover maps between 1993 and 2008 were produced. The classification 
scheme defined 9 and 12 classes at two hierarchical levels. Overall accuracies achieved 
were up to 76%. Tropical and temperate forest was classified with accuracy up to 78% and 
82%, respectively. Although specifically designed for the needs of Mexico, the general 
process is suitable for other participating countries in the REDD+ program to comply with 
guidelines on standardization and transparency of methods and to assure comparability. 
However, reporting of change is ill-advised based on the annual land cover products and a 
combination of annual land cover and change detection algorithms is suggested. 
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1. Introduction 

“At present, REDD pilot projects are sprouting up in communities around the tropics, often using 
government funds or in some cases carbon credits that have been issued on voluntary carbon markets. 
As helpful as these individual projects might be for improving people’s livelihoods and preserving 
local biodiversity, however, it’s not clear that they measurably reduce global-warming emissions. To 
realize the full promise of REDD—and to tap into the much larger flows of private money expected in 
future carbon markets—nations must ultimately manage their forests on a national scale” [1]. 

During the 16th session of the Conference of the Parties of the United Nations Framework 
Convention on Climate Change (UNFCCC) in Cancun in November 2010, Mexico presented its 
envisaged national strategy for the United Nations program of Reducing Emissions from Deforestation 
and Forest Degradation (REDD+). Mexico is going to use its National Forest and Soils Inventory 
(INFyS) and satellite-based remote sensing technologies as instruments for developing a robust 
national Measuring, Reporting, and Verification (MRV) system in which the state and change of land 
cover plays a key role for activity data (AD) monitoring. The specific requirements for a MRV system 
in Mexico with one hectare reporting units limit the available satellite data sources to establish a 
historic record to the Landsat system with 30 m spatial resolution and wall-to-wall national coverage 
with systematic image acquisitions.  

The state and change of the land cover in Mexico has been characterized by several regional studies 
utilizing Landsat data and applying different class schemes, e.g., in Southern Mexico [2], eastern 
Coastal Mexico [3], Northwestern coastal Mexico [4], Southern Yucatan [5], the states of Campeche [6], 
or Chihuahua [7]. Only a few studies attempted mapping at the national level. The North American 
Landscape Characterization mapped 12 classes with Landsat Multispectral Scanner (MSS) and 
Thematic Mapper (TM) triplicates at 60 m spatial resolution but classification accuracy of 60% to 67% 
was too low for spatially explicit change detection [8]. Continental studies map or monitor the land 
cover of Mexico using 250 m MODIS [9–11] and 500 m MODIS [12,13] but the spatial resolution is 
too coarse for MRV systems. The Mexican National Institute of Statistics and Geography (Instituto 
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Nacional de Estadística y Geografía, INEGI) provided several national vegetation type maps at a scale 
1:250,000 with about 70 classes [14,15]. In addition to an inappropriate scale for a MRV system, 
mapping inconsistencies due to differences in geometry and class definitions, as well as mapping 
sources make change detection from map to map comparison not recommendable. The full potential of 
the entire Landsat archive for automated wall-to-wall land cover mapping and change monitoring of 
Mexico has up to date not been explored. One of the aims of the MRV-AD monitoring system is to 
provide standardized annual wall-to-wall land cover products. Timely delivery for a country of a size 
like Mexico with two million km2 can only be achieved in a standardized and cost-beneficial manner 
by automatic classification of remote sensing imagery.  

The paper presents the MAD-MEX system (Monitoring Activity Data for the Mexican REDD+ 
program) for automatic wall-to-wall baseline land cover mapping. It is the aim of the MAD-MEX 
system to deliver, standardized national land cover products in timely and transparent fashion at a 
given reported classification accuracy. This will serve as the prime base product for further (visual) 
interpretation and enhanced land cover class assignment. We deem this the only feasible method to 
frequently update national land cover and land use products at a production scale of 1:100,000.  

For the historical baseline mapping the complete Landsat archive containing all imagery recorded 
over Mexico utilizing ETM+ and TM sensor data are used. The classification process follows an 
object-oriented “Map-to-Image” approach, i.e., utilizing existing cartographic land use information at 
high thematic resolution as base information for classification training. All available Landsat data are 
used that meet the defined quality criteria, which is currently a maximum cloud cover threshold of ten 
percent. However, the cloud coverage threshold has only been applied for the classifications for the 
years 1993 to 2000. Multi-temporal metrics are calculated on pre-processed Landsat scenes for a given 
year. Image objects are derived by image segmentation and object features are extracted from the 
multi-temporal metrics. Initial thematic mapping against the base land use map is done and forms the basis 
for classificatory training. Subsequent decision tree classification is performed using the object features. 
Final product validation and class aggregation is done on independent field inventory data. National land 
cover products have been processed for the years 1993, 1995, 1997, 2000, 2002, 2005, and 2008. 

2. Data 

All available Landsat7 ETM+ and Landsat5 TM L1T data acquired over Mexico in the respective 
years with cloud cover less than 10 percent have been used. For the years 2002, 2005, and 2008, the 
cloud threshold has been neglected. A wall-to-wall coverage of the whole country requires 135 distinct 
tiles (path/row). For the years 1993, 1995, 1997, 2000, 2002, 2005, and 2008, a total of 1081, 964, 
1005, 2173, 2518, 3696, 5706 images, respectively, were employed. Figure 1 displays the quantitative 
distribution of Landsat scenes for the year 2000 indicating unequal distribution of the number of image 
acquisitions that meet the given cloud coverage criteria. Naturally, the number of available scenes is 
lower in southern regions dominated by frequent cloud coverage during rainy season. 

A national Digital Elevation Model (DEM) dataset has been provided by INEGI. The Continuous 
Mexican Elevation Dataset (Continuo Mexicano de Elevaciones CEM versión 2.0) is based on the 
interpolation of elevation contours at 1:50,000, geodetic points, and also the hydrographic network and 
water bodies at a scale of 1:50,000. Its final version 2.0 has been produced in 2010 and data are 
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available continuously for the whole country as raster datasets with approximately 30 m pixel size. In 
addition to the actual elevation values we derived slope and aspect values. 

Figure 1. Overview of Landsat TM and ETM+ Level 1T data availability for Mexico in the 
year 2000. The numbers and color codes represent absolute numbers of scenes with a cloud 
cover less than 10% available per frame (path/row). 

 

The National Institute of Statistics and Geography of Mexico (INEGI) create and publish vegetation 
type maps (uso de suelo y vegetación, USV) for the national level at a scale of 1:250,000 using a  
25 hectare minimum mapping unit. Those maps differentiate about 70 thematic classes including 
different vegetation types and areas devoted to agriculture, livestock, and forestry. They also include 
specific information on representative plant species vegetation classes. Four map series have been 
published, in brackets the years of reference satellite data used for the respective products are given: 
USV I (1979–1991), USV II (1993–1999), USV III (2002–2004) [14], USV IV (2005–2007) [15], and 
an update to USV V has been released by INEGI as of October, 2013. For generating a national land 
cover reference dataset we utilized INEGI USV series II, III, and IV. 

INEGI’s map production process includes (i) manual preliminary interpretation and on-screen 
digitizing of available satellite imagery (Landsat, SPOT); (ii) field verification in selected information 
sites, whereby for the so called “checkpoints” detailed information is measured and for the 
“observation” points only qualitative information on vegetation type and land use is collected. 
Verification is either done in-field or supported by helicopters in remote areas; (iii) reinterpretation 
based on field verification results and comparative analysis with the previous map series; (iv) analysis 
and integration of information to object polygons; and finally; (v) the map edition yielding in a vector 
map comprising different information layers on vegetation types, vegetation ecosystems, agricultural 
usage and others, such as urban areas or water bodies. 

Sample data from different national inventories have been used to assess the classification accuracy 
of land cover products. Forestry samples were provided by the National Forestry Commission 
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(Comisión Nacional Forestal) [16]. The Colegio de Posgraduados (COLPOS) and the Secretaría de la 
Reforma Agraria (SRA) provided samples for grassland and agricultural land use [17,18] and INEGI 
for urban areas [19]. 

3. Classification Scheme 

A hierarchical national land cover classification scheme at two levels has been defined. The initial 
classification scheme of 13 designated land cover classes has been defined by INEGI, CONAFOR, the 
National Commission for Knowledge and Use of Biodiversity (Comisión Nacional para el 
Conocimiento y Uso de la Biodiversidad, CONABIO), and the National Institute of Ecology and 
Climate Change (Instituto Nacional de Ecología y Cambio Climático, INECC) [20]. Additionally a 
level one classification scheme was defined with ten classes. Since a “snow and ice” class is not 
available in the reference maps and only occurs on some vulcan mountain tops, this class has been 
eliminated. This led to a final classification scheme of 9 and 12 classes at two levels, respectively 
(Table 1). 

Table 1. National land cover classification scheme at two levels. 

Land Cover Class (Level 1) Land Cover Class (Level 2) Description of Class 

1 Temperate forest 

1 Temperate coniferous forest 
All coniferous forest types including pine, fir, 
cedar and junipers 

2 Temperate deciduous forest 
All broad-leaved temperate deciduous forest 
types, mainly oak 

3 Temperate mixed forest 
All mixed temperate forest types of either oak-
pine forest or pine-oak forest 

2 Tropical forest 4 Tropical evergreen forest 

All high, semi and lower evergreen tropical 
forest types as also mangrove forest, natural 
palms, gallery forest, cloud forest and  
peten vegetation 

  
5 Tropical deciduous forest 

All deciduous tropical forest types as also 
subtropical and submontane scrub land and 
(tropical) mesquite woodland 

3 Scrubland 6 Scrubland 

All crasicaule, sarcocaule, coniferous and 
desert scrubs as also gallery vegetation, 
scrubby halophile and gypsophile vegetation, 
and mesquite desert vegetation 

4 Wetland vegetation 7 Wetland vegetation 
Marsh and floodplain vegetation and other 
halophile vegetation 

5 Agriculture 8 Agriculture Irrigated, rain-fed and moist soil agriculture 

6 Grassland 9 Grassland 
Natural, induced and cultivated grassland as 
also savannah, coastal dune vegetation  
and prairie 

7 Water body 10 Water body Water bodies and aquaculture 
8 Barren land 11 Barren land Apparent un-vegetated 
9 Urban area 12 Urban area Human settlements 

10 Snow and ice 13 Snow and ice Snow and ice 
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4. Methods 

Due to varying numbers of available Landsat images per path/row at different times of a given year, 
processing was performed on frame stacks with the available Landsat imagery. Figure 2 provides an 
overview of the individual processes grouped in five general steps. The methodology applies all 
available satellite imagery over only a few clear observations or even country mosaics to benefit from 
the full multi-temporal measurements and not to lose that information by temporal aggregation. 

Figure 2. Generalized workflow of the automatic Landsat-based land cover classification 
processing system. 

 

4.1. Data Processing  

Frame-based (path/row) processing includes the identification and extraction of all Landsat scenes 
from the data archive followed by several preprocessing steps. Each Landsat scene was radiometrically 
calibrated to top-of-atmosphere (TOA) and surface reflectance using the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) [21–23]. The FMASK algorithm [24] masks 
pixels which are classified as cloud, shadow, water, and no-data. The Normalized Difference 
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Simple Ratio Index (SR), and 
Atmospherically Resistant Vegetation Index (ARVI) were calculated from surface reflectance images. 
Based on the TOA reflectance the 6 Tasseled Cap components (TC1-TC6) were calculated using the 
transformation coefficients described in [25,26].  

Once all scenes for one path/row were preprocessed we formed ten annual time series (TS) of 
NDVI, EVI, SR, ARVI, and the six Tasseled Cap components As suggested by several other  
studies [9,27,28] simple temporal metrics (minimum, maximum, range, average, and standard 
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deviation) were calculated from the ten time series. This calculation was only applied to pixels with 
valid observations (not flagged by FMASK as cloud or shadow) and has the potential to mitigate the 
effect of remaining erroneous data. The temporal feature set yields 50 dimensions (five multi-temporal 
metrics applied to ten time series). 

Image segmentation [29,30] was performed on the multi-temporal NDVI metrics using the Berkeley 
Image Segmentation software. From empirical tests the respective segmentation parameter compactness 
was set to 0.5, shape to 0.5, and the iteration threshold to 5. NDVI metrics proved sufficient to 
represent seasonal variations during the course of the year. For each image segment a simple set of 
object metrics (minimum, maximum, average, and standard deviation) were computed from temporal 
features (the five multi-temporal metrics applied from the ten time series), resulting in a set of image 
samples represented by 200 attributes/features. 

Principal component analysis was subsequently applied on the beforehand extracted object features 
in order to reduce information redundancy in the feature metrics by reducing the feature space to a 
dimension in which only statistically significant features are condensed. Principal components were 
ranked according to their explanatory power. Only those principal components were chosen for further 
analysis where the cumulative explained variability of the top principal components reached a 
threshold of 95%. 

In addition, we introduced information from the digital elevation model to the object feature space. 
For each image segment, descriptive statistics (minimum, maximum, average, and standard deviation) 
from the DEM, the derived slope and aspect raster images were calculated, respectively. For doing so 
DEM and derived images were transformed on-the-fly to fit to the current Landsat frame map 
properties and image dimensions. 

4.2. Training Dataset Generation  

The thematic class from the INEGI USV reference map objects has been assigned to all image 
objects which geometry were spatially completely within that USV map object. This step is critical 
because these reference maps do also provide errors mainly due to the degree of manual interpretation 
and the cartographic generalization resulting in discrepancies due to labeling errors and positional 
errors [31]. In order not to propagate such errors into the classification training process (i) a 
persistency analysis on the INEGI USV series II to IV; and (ii) an outlier elimination as described 
below were performed. For persistency analysis all INEGI USV map series II to IV were intersected 
against each other and new objects having new geometries were generated by conserving their 
respective original attributes. Finally, only those objects were kept, which land use attributes have been 
constant over all three map series. Land cover information according to the defined scheme at all levels 
has finally been assigned to each object. CONAFOR and INEGI have delivered the translation of 
INEGI USV land use and vegetation type classes to the designated classification scheme. The scale of 
INEGI USV is 1:250,000 with a MMU of 25 hectare while a 30 m Landsat-based land cover map 
results in a conservative scale of 1:100,000 [32] (following the rule of thumb “Scale = Resolution  
(in meters) × 2 × 1000”). Thus, many of the object samples are being labeled with a potentially wrong 
thematic class because a map object of INEGI USV consists of many segmented image objects that 
should be labeled to different classes. We do recognize this as a source of error. However, INEGI 
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USVs are the only available spatially-explicit and thematically-detailed data source at the national 
level at a rather high percentage of accurately labeled objects at its given scale and mapping unit. To 
identify erroneous object samples subsequently to be excluded from classification training an outlier 
analysis was performed. In order to do this, iterative histogram trimming over the first three features 
(principal components) over all image object samples and all land cover classes was applied. The 
concept of iterative trimming has been utilized by Radoux and Defourny for the object based detection 
of forest changes [33,34]. However, the approach is also suitable in order to produce “pure”  
image-objects as basis for classification training. The hypothesis behind iterative trimming is that 
objects belonging to the same class share the same distribution over their describing features. The 
distribution is described by the probability density function calculated by the non-parametric Kernel 
Density Estimation (KDE). Outliers were excluded based on a probability density threshold and the 
new parameters of the distribution were reprocessed until all objects showed to be above the threshold. 
We chose a rather strict initial probability threshold. The threshold has been dynamically calculated as 
the probability value which scored at the 25% histogram percentile value. This will cause an initial 
reduction to only those 75% percent of objects which are most probable and then iteratively further 
reduces the objects until all of the remainder are above the threshold. 

4.3. Classification 

Training of the classifier utilized only those objects remaining after outlier elimination. 
Classification was performed with supervised C5.0 decision tree algorithms [35,36], which are robust, 
non-parametric, do not suffer the curse of dimensionality as they only focus on the important features, 
are resource efficient, and work well on noisy data. For each Landsat frame a ten-folded C5.0 decision 
tree was trained from the training object samples and applied to the entire set of image objects. 

Resulting classified objects amounted in average to 40,000,000 for the whole country. Since the 
Landsat frame system provides an overlap over neighboring frames, many objects intersect spatially. 
Objects from overlapping classifications have subsequently been intersected to new geometries by 
preserving their origin attributes, namely the predicted class and the C5.0 classification confidence 
value. Each object’s predicted class has been relabeled to the class that had been predicted at higher 
confidence. To speed up subsequent geo-processing and to support meaningful data distribution 
classified vector polygons were converted to raster representation and mosaicked to a 30 m national 
raster dataset. Finally, small objects below the minimum mapping unit were removed by applying 
morphological image closing.  

4.4. Validation 

Results from object classification for the year 2000 were validated against point samples from the 
different field inventories. All annual land cover products were validated, however, the year 2000 land 
cover dataset was chosen as a reference data set because of the best satellite data availability from the 
Landsat TM and still intact (until the 2003 scanline failure) ETM+ sensors. 

Due to a too small number of samples for each path/row (Landsat frame) validation was performed 
at the national level. Utilizing all available reference points from the forest inventory (INFyS) would 
have introduced an error which will negatively propagate into the validation results. This error is 
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primarily based on the scale difference between image classification and field inventory size. The four 
sub-plots (of app. 400 m2 each) representing one permanent inventory plot of approximately one 
hectare do not necessarily feature one land use class. Therefore, only those forest inventory reference 
points were employed for validation which sub-plots feature the same land cover class. Plots which meet 
this criterion are represented by only one point which is the centroid of the four sub-plot reference points. 

Random area-weighted stratified sampling was performed by using the land cover classes from the 
INEGI USV reference map as strata. The validation procedure followed the protocol described by 
Olofsson et al. [37]. For stratified sampling a total of 5000 (#1) and 10,000 (#2) points to be used for 
validation were defined and have been randomly extracted for each class with respect to the class area 
weight Wi (see Table 2) calculated as Wi = Am,i/Atot with Am,i being the mapped area of class i and Atot 
being the total area mapped, both calculated from the official INEGI USV III map. The final samples 
per class have then simply been calculated as Si = Wi × Stot, with Si being the samples per class and Stot 
the assigned maximum number of samples. The sampling was done in five independent iterations in 
order to analyze stability of validation results over different combinations and number of sample 
points. In addition, validation utilizing all available point samples was done. Validation was done for 
all the annual land cover products, even if the years of field sample acquisition do not correspond. 
However, they are the only sources available on a national scale and one can assume that actual land 
cover change rates over the years are very small so that the majority of the sample points preserve their 
land cover label. Validation delivered overall accuracies for each land cover product over the different 
sample sizes and classification schemes. For the year 2000, class based producers and users accuracies 
were derived from the error matrix as also from the error-adjusted area estimates along with their 
confidence intervals. Finally, comparisons of the resulting year 2000 national map against the 
respective INEGI map series with respect to the area proportion of each class were performed.  

Table 2. Number of field samples available for validation and number of stratified samples 
per land cover class.  

Class Name 
Mapped Area 

Am,i (sqkm) 

Class Area 

Weight Wi 

Total Number of 

Available Samples 

Stratified Number 

of Samples #1 

Stratified Number 

of Samples #2 
Temperate coniferous forest 79,717 0.041 925 205 410 
Temperate deciduous forest 133,396 0.069 3498 343 686 
Temperate mixed forest 131,524 0.068 1929 338 676 
Tropical evergreen forest 134,305 0.069 3835 346 692 
Tropical deciduous forest 282,099 0.145 3932 726 1452 
Scrubland 511119 0.263 1951 1315 2630 (* 1951) 
Wetland vegetation 10,674 0.005 57 27 54 
Agriculture 308,236 0.159 4978 793 1586 
Grassland 316,006 0.163 66,267 813 1626 
Water body 14,207 0.007 945 37 74 
Barren land 9683 0.005 285 25 50 
Urban area 12,595 0.006 465 32 64 
SUM 1,943,560 1.000 89,067 5000 9321 

* All available samples have been taken if fewer samples exist than stratification calculated. 
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5. Results  

We used persistent areas calculated from the INEGI series II to IV as initial reference objects. This 
reduced the national USV dataset of approximately 1,950,000 km2 by 23% to 1,500,000 km2. 
Subsequent outlier elimination generated the final training objects representing approximately  
780,000 km2 (area derived from the year 2000 classification). The final training dataset represents 40% 
of the whole country (Figure 3). 

Figure 3. Reduction of reference training objects by persistency analysis of the INEGI 
USV series and class based outlier elimination. 

 

National land cover products for the years 1993, 1995, 1997, and 2000 have been processed at the 
Mexican National Commission for Knowledge and Use of Biodiversity (CONABIO). Products for 
2002, 2005, and 2008 were processed at the Woods Hole Research Center (WHRC). Utilizing a 
processing cluster of 20 processing nodes at CONABIO and 14 nodes at WHRC full processing of one 
year land cover map took at longest one week. As an example a map showing the national land cover 
product for the year 2000 is given in Figure 4 with the classes labeled to level 2. Figure 5 shows a 
comparison of the MAD-MEX land cover products 1993, 1995, and 2000 against the INEGI USV 
series III product highlighting the higher scale and geometric detail of objects in the land cover 
classification products.  
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Figure 4. National land cover product for the year 2000 derived by automatic processing 
of 2173 Landsat scenes by the MAD-MEX system. 

 

Figure 5. Comparison of the 1:250,000 INEGI map on land use and vegetation types against 
the 1:100,000 land cover products from MAD-MEX for the years 1993, 1995, and 2000. 
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Overall accuracy for the validations of the 1993, 1995, and 2000 land cover products is given in 
Table 3. This result is based on five iterations over 5000 and 9321 randomly selected samples and also 
one validation utilizing all available sample data. Utilizing 5000 sample points overall accuracies at 
level 2 rate 70% to 72% for all years. For the 9321 sample points similar accuracies between 69% and 
71% were achieved. When validating against level 1 overall accuracies increase to 75%–77%. 
Comparing values retrieved for using either 5000 or 9321 sample points exhibit no apparent difference 
in calculated accuracies. The overall accuracies derived from using all available sample points, 
however, are lower, rating between 62% and 66%. These are very much influenced by the unequal and 
non-stratified distribution of samples available per class especially with disproportionate amount of 
samples in the grassland class. 

Table 3. Overall accuracies for the validations of the national land cover products for the 
years 1993, 1995, and 2000. 

Year 
Random Stratified Samples #1 Random Stratified Samples #2 

All Samples 
Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5 

Level 2 (13 classes) 
1993 70.4 70.4 71.5 71 70.4 70.6 70.2 69.9 69.5 70.4 62 
1995 70.4 70.5 70.9 71.7 71.8 69.8 69.8 70.1 69.3 69.7 62.8 
2000 69.6 71 70.4 71.1 69.9 70.1 69.7 69.3 70.6 69.3 63.7 

Level 1 (10 classes) 
1993 76.2 75.8 76.1 76.1 76.1 76 76 75.3 75.4 75.8 63.9 
1995 75.7 75.7 76.3 77.1 76.7 75.8 75.8 76.2 75.2 75.4 64.9 
2000 74.8 76.2 75.7 75.8 75.3 76 75.6 74.9 76.1 75.2 65.7 

Class based producers and users accuracies for the validations of the year 2000 land cover product 
using 9321 randomly sampled validation points against level 1 and 2 of the classification scheme 
derived from the error matrix are given in Table 4. Good agreements of classification results with 
validation data have been found for tropical evergreen forest (74.9%–78.8%), scrubland (80.7%), 
agriculture (75.4%–78.5%), and barren land (72.0%–88.0%). Only moderate results were achieved for 
tropical deciduous forest (68.5%–70.1%), wetland vegetation (64.8%–68.5%), urban areas  
(64.1%–73.4%), and water bodies (59.5%–68.9%) as also for the grassland class (61.6%–68.9%). The 
temperate forest classes in general were classified poorly ranging roughly 50% to 60%. At level 1 the 
aggregated class for temperate forests rates very high with producers accuracies between 78.8% and 
82.1%. The respective class representing the tropical forests also yields in high accuracies (76.2%–77.5%).  

Table 5 shows the error matrix for the validation against the 9321 points retrieved for the first 
iteration of the validation of the MAD-MEX land cover 2000 map along with sample accuracies 
calculated from the estimated area proportions. Among the temperate forests one can observe the 
majority of confusions taking place between these three classes with 16.8% of actual temperate 
coniferous forest samples classified as temperate mixed forest; 12.7% of temperate deciduous forest 
wrongly classified as temperate mixed forest, and 27.2% and 9.6% of actual temperate mixed forest 
classified to temperate coniferous forest and temperate deciduous forest, respectively. We can also find 
9.3% of temperate deciduous forest samples misclassified to tropical deciduous forest. Vice versa, 
5.7% of tropical deciduous forest is classified as temperate deciduous forest. This can be explained 
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with similar phenological patterns for these two broad-leaved forest types. Tropical deciduous forest 
further confuses with the evergreen forest class (5.2%), scrubland at a rate of 5.5% as also to grassland 
(5.5%). The latter can be explained by confusions of secondary woody and herbaceous forests to 
scrublands. With that, confusions to scrubland and grassland are likely to occur. Scrubland rates very 
high with major confusion of 5.4% to grassland. Barren land gets classified at an accuracy of 72.0% 
with the majority of errors (12.0%) towards scrubland. Wetland vegetation confuses with grassland 
with an error rate of 18.5%. This class is defined by Popal and Tular vegetation, which are herbaceous 
aquatic vegetation types in marshy places and the coastal plains. Having similar structure and being 
evergreen confusion with grassland is likely. Over almost all classes misclassifications to agriculture 
can be observed, especially and surprisingly for urban areas (25.0%). Major confusions of agriculture 
samples are found with the grassland class (13.8%) and vice versa with 18% of grassland samples 
classified as agriculture. Grassland further confuses with tropical evergreen and deciduous forests at 
rates of 5.5% and 6.6%. This might occur because the grassland samples received from COLPOS also 
assign livestock which often takes place within the tropical forests. Surprisingly, the relatively easy 
class of Water bodies confuses especially with Barren land. Reasons can be the availability of both 
permanent and non-permanent water bodies in the reference dataset and/or the under- and/or over 
representation of the water class in the INEGI USV training dataset in some regions. With respect to 
the confidence values standard errors above 15% in either produces or users accuracy are observed for 
water bodies, barren land, urban areas, and wetland vegetation. Those classes are mostly overestimated 
as can be seen by the poor Users accuracies values. However, all of those classes represent only very 
small area portions summing up to approximately 1% of the country area. 

Table 4. Producers and users accuracies for the validations at level 2 and the aggregated 
forest classes at level 1 of the national land cover products for the year 2000. 

Class Producers Accuracies Users Accuracies 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5 

Level 2 

Temperate coniferous forest 62.2 59.5 60.0 62.4 58.0 51.8 53.0 51.2 53.2 50.0 

Temperate deciduous forest 57.4 57.0 54.8 58.6 55.4 62.5 63.5 62.8 62.7 62.7 

Temperate mixed forest 53.4 53.4 55.2 54.3 51.5 64.1 61.9 63.0 63.8 62.8 

Tropical evergreen forest 77.5 74.9 75.4 78.8 77.7 69.9 67.4 68.6 70.7 70.6 

Tropical deciduous forest 69.5 69.6 68.5 70.1 68.5 76.7 75.1 74.9 75.7 73.6 

Scrubland 80.7 80.7 80.7 80.7 80.7 91.1 91.5 91.3 92.1 90.3 

Wetland vegetation 66.7 64.8 66.7 64.8 68.5 30.5 26.5 27.7 29.9 27.2 

Agriculture 77.0 76.9 75.4 78.5 76.0 67.4 66.8 65.6 67.9 67.2 

Grassland 62.2 61.6 62.2 62.2 62.5 63.3 63.7 63.9 65.0 64.0 

Water body 68.9 66.2 59.5 64.9 64.9 54.8 57.0 58.7 57.1 57.1 

Barren land 72.0 88.0 80.0 80.0 84.0 40.0 48.4 43.5 44.4 45.7 

Urban area 67.2 73.4 67.2 67.2 64.1 37.7 39.5 33.1 36.1 30.4 

Level 1 

Temperate forest 82.1 80.5 79.3 81.2 78.8 86.4 86.0 84.1 84.7 85.4 

Tropical forest 77.3 76.9 76.2 77.5 77.0 79.6 78.0 78.2 78.6 78.1 
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Table 5. Error matrix of sample accuracies and estimated area proportions presented with 95% confidence interval derived from 9321 field 
samples from the first random sampling against the year 2000 product. Map categories are the columns while the reference categories are 
rows. AgC = Agriculture, TeC = Temperate coniferous forest, TeD = Temperate deciduous forest, TeM = Temperate mixed forest,  
WaB = Water body, ScL = Scrubland, GrL = Grassland, TrE = Tropical evergreen forest, TrD = Tropical deciduous forest, BaL = Barren land, 
UrA = Urban area, WeV = Wetland vegetation. 

Class AgC TeC TeD TeM WaB ScL GrL TrE TrD BaL UrA WeV Total PA UA OA 

E
rr

or
 m

at
ri

x 

AgC 0.770 0.003 0.004 0.003 0.009 0.020 0.138 0.008 0.012 0.001 0.026 0.006 1.000 0.77 ± 0.04 0.66 ± 0.03 0.71 ± 0.04 
TeC 0.061 0.622 0.054 0.168 0.002 0.015 0.044 0.027 0.007 0.000 0.000 0.000 1.000 0.62 ± 0.08 0.52 ± 0.07 
TeD 0.067 0.026 0.574 0.127 0.000 0.010 0.082 0.017 0.093 0.003 0.000 0.000 1.000 0.57 ± 0.06 0.61 ± 0.06 
TeM 0.030 0.272 0.096 0.534 0.000 0.000 0.025 0.028 0.015 0.000 0.000 0.000 1.000 0.53 ± 0.06 0.64 ± 0.07 
WaB 0.041 0.000 0.000 0.000 0.689 0.014 0.027 0.054 0.000 0.108 0.000 0.068 1.000 0.69 ± 0.19 0.53 ± 0.17 
ScL 0.046 0.004 0.017 0.000 0.004 0.807 0.054 0.002 0.033 0.020 0.007 0.006 1.000 0.81 ± 0.02 0.93 ± 0.02 
GrL 0.180 0.005 0.014 0.009 0.007 0.013 0.622 0.054 0.066 0.001 0.006 0.023 1.000 0.62 ± 0.04 0.62 ± 0.04 
TrE 0.025 0.006 0.007 0.010 0.001 0.000 0.098 0.775 0.053 0.000 0.003 0.022 1.000 0.77 ± 0.05 0.70 ± 0.05 
TrD 0.055 0.007 0.057 0.014 0.001 0.055 0.059 0.052 0.695 0.000 0.002 0.002 1.000 0.69 ± 0.04 0.75 ± 0.04 
BaL 0.000 0.000 0.000 0.000 0.080 0.120 0.040 0.000 0.020 0.720 0.020 0.000 1.000 0.72 ± 0.29 0.35 ± 0.19 
UrA 0.250 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.016 0.672 0.000 1.000 0.67 ± 0.23 0.36 ± 0.16 
WeV 0.019 0.000 0.000 0.000 0.019 0.000 0.185 0.093 0.000 0.000 0.019 0.667 1.000 0.67 ± 0.28 0.30 ± 0.17 

E
st

im
at

ed
 a

re
a 

pr
op

or
tio

ns
 

AgC 0.122 0.000 0.001 0.000 0.001 0.003 0.022 0.001 0.002 0.000 0.004 0.001 0.159 277,660 ± 9840 358,214 ± 11,465 
TeC 0.003 0.026 0.002 0.007 0.000 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.041 74,401 ± 6300 96,221 ± 6620 
TeD 0.005 0.002 0.039 0.009 0.000 0.001 0.006 0.001 0.006 0.000 0.000 0.000 0.069 143,675 ± 8559 124,722 ± 7946 
TeM 0.002 0.018 0.007 0.036 0.000 0.000 0.002 0.002 0.001 0.000 0.000 0.000 0.068 140,144 ± 7742 109,507 ± 7252 
WaB 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.007 11006 ± 2042 18,495 ± 3103 
ScL 0.012 0.001 0.004 0.000 0.001 0.212 0.014 0.001 0.009 0.005 0.002 0.002 0.263 532,518 ± 9737 442,340 ± 10,275 
GrL 0.029 0.001 0.002 0.001 0.001 0.002 0.101 0.009 0.011 0.000 0.001 0.004 0.163 310,182 ± 11,468 317,886 ± 12,266 
TrE 0.002 0.000 0.000 0.001 0.000 0.000 0.007 0.054 0.004 0.000 0.000 0.001 0.069 123,196 ± 6482 149,201 ± 7217 
TrD 0.008 0.001 0.008 0.002 0.000 0.008 0.009 0.008 0.101 0.000 0.000 0.000 0.145 308,886 ± 10,894 259,829 ± 9888 
BaL 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.004 0.000 0.000 0.005 6979 ± 2003 20,088 ± 3764 
UrA 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.006 8371 ± 1956 23,210 ± 3806 
WeV 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.004 0.005 6542 ± 1802 23,848 ± 3939 
Total 0.184 0.050 0.064 0.056 0.010 0.228 0.164 0.077 0.134 0.010 0.012 0.012 1.000 1,943,561 ± 78,825 1,943,561 ± 87,540 
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The national land cover classification for the year 2000 was compared to the INEGI USV III map. 
The total areas per class are presented in Table 6 with the areas being directly calculated from the 
INEGI USV map and the MAD-MEX 2000 product. In addition the area ranges as retrieved from the 
area adjusted error matrix and the standard errors in Table 5 are listed.  

Table 6. Comparison of area of each land cover class derived from the INEGI USV III 
reference map, the MAD-MEX 2000 classified map as also from the area estimates derived 
from validation of the 2000 product. 

Class 
Area (thousand km2) 

INEGI USV III (2002–2004) MAD-MEX 2000 Producers Estimate Users Estimate 

Temperate coniferous forest 79.72 73.7 68.10–80.70 89.60–102.84 

Temperate deciduous forest 133.4 144.34 135.12–152.23 116.78–132.67 

Temperate mixed forest 131.52 125.24 132.40–147.89 102.26–116.76 

Tropical evergreen forest 134.3 134.56 116.71–129.68 141.98–156.42 

Tropical deciduous forest 282.1 256.43 297.99–319.78 249.94–269.72 

Scrubland 511.12 494.21 522.78–542.25 432.07–452.61 

Wetland vegetation 10.67 19.61 4.74–8.34 19.91–27.79 

Agriculture 308.24 342.65 267.82–287.50 346.75–369.68 

Grassland 316.01 297.2 298.71–321.65 305.62–330.15 

Water body 14.21 21.08 8.96–13.05 15.39–21.60 

Barren land 9.68 26.86 4.98–8.98 16.32–23.85 

Urban area 12.59 21.34 6.41–10.33 19.40–27.02 

Total area 1943.56 1957.22 1943.56 ± 78.83 1943.56 ± 87.54 

Total forest area 761.04 734.27 790.30 ± 39.98 739.48 ± 38.92 

% Forest area 39.16% 37.52% 40.66% ± 5.06% 38.05% ± 5.26% 

The total classified area shows clear discrepancies in between the MAD-MEX land cover map 
extend (1943.56 × 103 km2) and the INEGI map extend (1957.22 × 103 km2). This can be explained in 
two ways: (1) A country mask preserving only land information over Mexico was applied. To do this, 
we applied a buffer of 300 m to the vector dataset representing the Mexican national territory in order 
to account for generalization effects in the polygon dataset which was available at a scale of 1:250,000. The 
result of this is that we also classified coastal and boundary objects outside Mexico; (2) For individual 
years of classification, some areas could not be classified due to only one observation or a total lack of 
Landsat imagery, a phenomenon that occurred mainly over some small islands. 

The total area of forest resulting from aggregating the areas of temperate and tropical forest types 
rates 761.04 × 103 km2 and 734.27 × 103 km2 in INEGI USV map and the MAD-MEX product, 
respectively. Other published statistics indicate a much lower forest area. For example the Global 
forest assessments by the Food and Agriculture Organization of the United Nations (FAO) reported 
677,000–678,000 km2 for 1990, 2000, and 2010, respectively [38]. Other numbers are given by Mas et al. 
who reported a forest area of appr. 640,000 km2 for the year 2000 [31]. The MAD-MEX results 
disagree with those numbers with approximately 10% overestimation. However, the definition of the 
tropical deciduous forest class includes also subtropical and submontane scrub land and (tropical) 
mezquite woodland. This is actually in line with the current forest definition of Mexico which defines 
forests as plant communities, mainly of woody composition with 5 m height and 10% cover density 
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(over ground) and of a minimum area of 0.5 ha. Moreover, subtropical scrubs are defined as a 
community of shrubs or small deciduous trees that grow in a transition zone between temperate forests, 
tropical deciduous forests and scrub. They represent a successive stage of the lower tropical deciduous 
forest (Selva baja caducifolia) [39]. Submontane scrubland is a community of sometimes very dense 
thorny or deciduous shrub species developing among the arid scrubland, oak forests and deciduous 
tropical forest with tree heights up to 5 m [39]. Likewise, mesquite trees reach a height of 20 m and 
can occur very dense especially the tropic mesquites. In the INEGI USV series III map that sum up to 
an area of 71,000 km2 which very well describes that overestimation. 

Scrutinizing individual class based area proportions we find discrepancies between the MAD-MEX 
land cover maps and the respective USV map within their estimated error margins. Highest differences 
are observed for water bodies, barren land, urban areas, and wetland vegetation as already indicated by 
the error matrices. Measured and estimated total forest areas agree very well with the measured area in 
the reference INEGI map and the estimated error margin of only 5% that represent an area of about  
40 × 103 km2 which is about 2% of the whole country.  

6. Discussion 

The applied standardized methodology and technical implementation provides robust and fast 
processing of thousands of Landsat data sets. The methodology is transparent, transferable, has a reported 
accuracy margin and delivers timely national land cover products. Within one week a wall-2-wall land 
cover map was produced. With respect to annual official national land cover production and reporting 
duties of INEGI and CONAFOR the automatic generation of the MAD-MEX may serve as the 
principal component of a future high frequency production chain sporting as well elements of visual 
interpretation over specific areas and classes.  

The classification methodology applied relies on the availability of Landsat time series for a given 
path/row. This is a considerable constraint of the applied methodology. Having said this, we do 
recognize the overall difficulty in obtaining data, be it of active and passive sensors for large area 
coverage year round in the tropics. 

On top of scene availability the availability of pixels not obscured by cloud or cloud shadow is of 
outmost importance. Those must be well distributed over time in order to capture eventual land cover 
dynamics on the ground as related for example to agriculture patterns or vegetation phenology. The 
effects of insufficient availability of multi-temporal information will propagate errors starting with the 
time-series metrics calculation to the image segmentation and feature extraction (which is based on the 
metrics of the time series) to the final object classification. This might limit the applicability of the 
here-proposed method to countries on the outer margins of the inner tropics precisely not featuring 
very high precipitation levels. On the other hand, it might result in limited options of the inner tropical 
countries to produce multi-year composites of land cover sets instead of annual products such as we 
propose for Mexico. Figure 6 visualizes the number of clear pixels, i.e., not masked by FMASK as 
clouds or shadows, available for the years 1993, 1995, and 2000. In red we highlighted those pixels 
having fewer than five clear observations. In yellow we visualized those having five to eight clear 
observations. Comparing the maps one can easily see that for the years 1993 and 1995 many pixels 
might be underrepresented in a multi-temporal space. Many others can be described as critical having 
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at maximum eight observations. Still the situation is not perfect in the year 2000; however, it appears 
to be the optimal year for generating the Mexican national reference land cover dataset.  

Figure 6. Illustration of the number of cloud- and -shadow free Landsat pixels per year. 

 

The calculated maps provided very good classification results at the national scale when 
representing 9 distinct land cover classes. Classifying into the next higher land cover classification 
level representing 12 classes delivered unsatisfying results especially for the temperate forest classes. 
The numbers derived by product validation make obvious the weakness of the applied methodology to 
discriminate between the temperate forest types. In addition, the thematic depth especially over the 
forest types is very little. However, the full potential of what land cover classes can actually be derived 
with the given data and methodology has so far not fully been explored. We will, therefore, focus on a 
data driven class separability analysis also employing the available sample data plus expert knowledge 
to potentially derive an optimized national land cover classification scheme. 

Main target of REDD+ is measuring and reporting deforestation and forest degradation which 
requires change analysis. The use of discrete land cover products as sole source is limited. It will 
propagate classification errors into the change products and derived change metrics. Our maps have a 
distinct error margin for each class. Even if we classified for some classes with very high accuracy, the 
error will always be greater than the rate of change for this specific class. Thus, a reporting of changes 
based on comparing discrete land cover maps is ill-advised. We therefore propose the combination of 
data driven change detection algorithms in combination with the land cover products for final 
assignation of the qualitative change i.e., the actual change class.  

7. Conclusions  

We presented the MAD-MEX system supporting automatic wall-2-wall land cover classification 
using the full Landsat data archive. The system is developed against open source technology with the 
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Berkeley Image Segmentation being the only commercial product. The system makes use of existing 
cluster infrastructures and over that supports parallel processing. It is stable and fast as it can process a 
national land cover map for Mexico with an area of two million square kilometers in a few days.  
MAD-MEX is easily configurable and transferable to other institutions hardware systems. 

The methodology applied for land cover classification relies on the availability of multiple Landsat 
acquisitions per year with as many as possible cloud- and shadow free pixels. In addition, it requires a 
national reference dataset at a defined thematic scheme. The implemented outlier elimination allows 
for the integration of generalized reference dataset as in the case of Mexico with the INEGI USV maps 
at 1:250,000.  

We calculated six national land cover products at defined 9 and 12 classes at a scale of 1:100,000 
for years from 1993 to 2008. The maps are in very well agreement with other national products. 
Validation was done on available field samples providing moderate to high classification accuracies. 
The results stimulate further investigations on the definition of a national land cover legend using 
feature- and validation driven class separability analysis. 

The Landsat-based land cover products calculated by MAD-MEX serve as the principal products in 
Activity Data Monitoring in the Mexican REDD-MRV activities. They source not only the baseline 
estimation but will also be processed for future annual monitoring at the respective 1:100,000 map 
scale. Given the fact, that MAD-MEX—transparently and standardized—produces a map with 
standardized thematic scheme and reported classification accuracies in within a few days, manual  
post-processing steps including error removal, assignation of higher thematic detail, enhanced 
validation, and final product publication are easily achievable in within one year. 

Acknowledgments 

The authors thank the Mexican Ministry of Environment and the Norwegian Ministry of Foreign 
Affairs for the funding of the project “Reinforcing REDD+ and South-South Cooperation” and the 
Centre for International Migration and Development (CIM) for providing resource funding.  

Author Contributions 

The research has been designed by Steffen Gebhardt, Thilo Wehrmann, and Michael Schmidt. The 
MAD-MEX system has been designed and implemented at the National Commission for the 
Knowledge and Use of Biodiversity (CONABIO) by Thilo Wehrmann, Steffen Gebhardt,  
Matthias Schramm, and Rene Kopeinig. Data processing at CONABIO was primarily conducted by 
Steffen Gebhardt. System installation and data processing at Woods Hole Research Center (WHRC) 
has been performed by Jesse Bishop, Oliver Cartus, and Josef Kellndorfer. Validation data collection 
and preparation was done by Miguel Angel Muñoz Ruiz and Pedro Maeda. Product validation was 
done by Steffen Gebhardt with support of Pedro Maeda in result interpretation. Rainer Ressl,  
Lucio Andrés Santos and Michael Schmidt have been responsible for project management and 
scientific advisory. The manuscript has been authored by Steffen Gebhardt, Josef Kellndorfer, and 
Michael Schmidt. 
  



Remote Sens. 2014, 6 3941 
 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. On the road to REDD. Nature 2009, 462, 11. 
2. Vaca, R.A.; Golicher, D.J.; Cayuela, L.; Hewson, J.; Steininger, M. Evidence of incipient forest 

transition in southern Mexico. PLoS One 2012, 7, doi:10.1371/journal.pone.0042309. 
3. Crews-Meyer, K.A.; Hudson, P.F.; Colditz, R.R. Landscape complexity and remote classification 

in eastern coastal Mexico: Applications of LandsatǦ7 ETM+ data. Geocarto Int. 2004, 19, 45–56. 
4. Alatorre, L.C.; Sánchez-Andrés, R.; Cirujano, S.; Beguería, S.; Sánchez-Carrillo, S. Identification 

of mangrove areas by remote sensing: The ROC curve technique applied to the northwestern 
Mexico coastal zone using Landsat imagery. Remote Sens. 2011, 3, 1568–1583. 

5. Schmook, B.; Palmer Dickson, R.; Sangermano, F.; Vadjunec, J.M.; Eastman, J.R.; Rogan, J.  
A step-wise land-cover classification of the tropical forests of the Southern Yucatan, Mexico.  
Int. J. Remote Sens. 2011, 32, 1139–1164. 

6. Soto-Galera, E.; Piera, J.; López, P. Spatial and temporal land cover changes in Terminos Lagoon 
Reserve, Mexico. Rev. Biol. Trop. 2010, 58, 565–575. 

7. Currit, N. Development of a remotely sensed, historical land-cover change database for rural 
Chihuahua, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 232–247. 

8. Lunetta, R.S.; Ediriwickrema, J.; Johnson, D.M.; Lyon, J.G.; McKerrow, A. Impacts of vegetation 
dynamics on the identification of land-cover change in a biologically complex community in 
North Carolina, USA. Remote Sens. Environ. 2002, 82, 258–270. 

9. Clark, M.L.; Aide, T.M.; Riner, G. Land change for all municipalities in Latin America and the 
Caribbean assessed from 250-m MODIS imagery (2001–2010). Remote Sens. Environ. 2012, 126, 
84–103. 

10. Colditz, R.R.; López Saldaña, G.; Maeda, P.; Espinoza, J.A.; Tovar, C.M.; Hernández, A.V.; 
Benítez, C.Z.; Cruz López, I.; Ressl, R. Generation and analysis of the 2005 land cover map for 
Mexico using 250 m MODIS data. Remote Sens. Environ. 2012, 123, 541–552. 

11. Latifovic, R.; Zhu, Z.L.; Cihlar, J.; Giri, C.; Olthof, I. Land cover mapping of north and central 
America—Global land cover 2000. Remote Sens. Environ. 2004, 89, 116–127. 

12. Blanco, P.D.; Colditz, R.R.; López Saldaña, G.; Hardtke, L.A.; Llamas, R.M.; Mari, N.A.; 
Fischer, A.; Caride, C.; Aceñolaza, P.G.; del Valle, H.F.; et al. A land cover map of Latin 
America and the Caribbean in the framework of the SERENA project. Remote Sens. Environ. 
2013, 132, 13–31. 

13. Giri, C.; Jenkins, C. Land cover mapping of greater Mesoamerica using MODIS data. Can. J. 
Remote Sens. 2005, 31, 274–282. 

14. INEGI Conjunto de Datos Vectoriales de la Carta de Uso del Suelo y Vegetación, Escala 
1:250,000, Serie III (Continuo Nacional); Instituto Nacional de Estadística y Geografía (INEGI): 
Aguascalientes, Ags., México, 2005.  



Remote Sens. 2014, 6 3942 
 

 

15. INEGI Conjunto de Datos Vectoriales de la Carta de Uso del Suelo y Vegetación, Escala 
1:250,000, Serie IV (Continuo Nacional); Instituto Nacional de Estadística y Geografía (INEGI): 
Aguascalientes, Ags., México, 2008.  

16. CONAFOR Inventario Nacional Forestal y de Suelos (INFyS 2004–2007); Comisión Nacional 
Forestal (CONAFOR): Zapopan, Jalisco, Mexico, 2007. 

17. COLPOS Classification of Agricultural Lands of Mexico; Colegio de Posgraduados (COLPOS), 
Segretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentacion de Mexico 
(SAGARPA): Texcoco, Estado de México, México, 2008. 

18. PROCEDE Registro Agrario Nacional (RAN)—Data from 1992 to 2006; Programa de 
Certificacion de Derechos Ejidales y Solares Urbanos (PROCEDE), Secretaría de la Reforma 
Agraria (SRA), Procuraduría Agraria (PA); Instituto Nacional de Estadística y Geografía 
(INEGI): Aguascalientes, Ags., México, 2006. 

19. INEGI Localidades de la República Mexicana, 2000; Instituto Nacional de Estadística y 
Geografía (INEGI): Aguascalientes, Ags., México, 2005. 

20. Avanzan en la Estandarización de Las Clases de Vegetación, Observador Forestal. 2013. 
Available online: http://www.mrv.mx/images/Observador_Forestal_02_Enero_2013.pdf (accessed on 
17 April 2014). 

21. Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, F.; Gao, F.; Kutler, J.; 
Lim, T.K. A Landsat surface reflectance dataset for north America, 1990–2000. IEEE Geosci. 
Remote Sens. Lett. 2006, 3, 68–72. 

22. Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, F.; Gao, F.; Kutler, J.; 
Lim, T.K. LEDAPS Landsat Calibration, Reflectance, Atmospheric Correction Preprocessing 
Code, Model Product; Oak Ridge National Laboratory Distributed Active Archive Center:  
Oak Ridge, TN, USA, 2012. 

23. Feng, M.; Huang, C.; Channan, S.; Vermote, E.F.; Masek, J.G.; Townshend, J.R. Quality 
assessment of Landsat surface reflectance products using MODIS data. Comput. Geosci. 2012, 38, 
9–22. 

24. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. 
Remote Sens. Environ. 2012, 118, 83–94. 

25. Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data.  
Remote Sens. Environ. 1985, 17, 301–306. 

26. Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation 
based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. 

27. De Fries, R.S.; Hansen, M.; Townshend, J.R.G.; Sohlberg, R. Global land cover classifications at 
8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree 
classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. 

28. Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 
1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. 

29. Berkeley Image Segmentation; Berkeley Environmental Technology International, LLC.: Long  
Beach, CA, USA. Available online: http://www.imageseg.com/ (accessed on 17 April 2014). 

30. Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy assessment measures for  
object-based image segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. 



Remote Sens. 2014, 6 3943 
 

 

31. Mas, J.-F.; Velázquez, A.; Díaz-Gallegos, J.R.; Mayorga-Saucedo, R.; Alcántara, C.; Bocco, G.; 
Castro, R.; Fernández, T.; Pérez-Vega, A. Assessing land use/cover changes: A nationwide 
multidate spatial database for Mexico. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 249–261. 

32. Chuvieco, E.; Huete, A. Fundamentals of Satellite Remote Sensing; CRC Press: Boca Raton, FL, 
USA, 2010. 

33. Radoux, J.; Defourny, P. Image-to-Map Conflict Detection Using Iterative Trimmingௗ: 
Application to Forest Change. In Proceedings of the International Society for Photogrammetry 
and Remote Sensing XXXVIII (4/C1), Calgary, Alberta, Canada, 5–8 August 2008. Available 
online: http://www.isprs.org/proceedings/xxxviii/4-c1/sessions/Session6/6731_Radoux_pap.pdf 
(accessed on 17 April 2014). 

34. Radoux, J.; Defourny, P. Automated image-to-map discrepancy detection using iterative trimming. 
Photogramm. Eng. Remote Sens. 2010, 76, 173–181. 

35. Quinlan, J.R. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine 
Learning), 1st ed.; Morgan Kaufmann Publishers, Inc.: San Mateo, CA, USA, 1992. 

36. Hodge, V.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. 
37. Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in 

land change studies: Estimating accuracy and area and quantifying uncertainty using stratified 
estimation. Remote Sens. Environ. 2013, 129, 122–131. 

38. FAO Global Forest Resources Assessment 2010, FAO For. Pap. 163; Food and Agriculture 
Organization of the United Nations: Rome, Italy, 2010. Available online: http://www.fao.org/ 
docrep/013/i1757e/i1757e.pdf (accessed on 17 April 2014). 

39. INEGI. Guía Para la Interpretación de Cartografía Uso del Suelo y Vegetación: Escala 1:250 
000 Serie III; Instituto Nacional de Estadística y Geografía (INEGI): Aguascalientes, Ags., 
México, 2009. Available online: http://www.inegi.org.mx/prod_serv/contenidos/espanol/bvinegi/ 
productos/geografia/publicaciones/guias-carto/sueloyveg/1_250_III/Suelo_Vegeta.pdf (accessed 
on 17 April 2014). 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


