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We have developed approaches to map and monitor land cover and land use 
change across the Chesapeake Bay watershed, in the mid-Atlantic region of 
the United States, using multi-temporal, multi-scale image data.  Here we 
provide an overview of the methods and map products, which have relevance 
to a range of resource management and decision-support applications.   

1 Introduction 

Multitemporal satellite data provide the capability for mapping and monitoring 
land cover and land use change, but require the development of accurate and 
repeatable techniques that can be extended to a broad range of environments and 
conditions.  We have developed approaches to map and monitor land cover and 
land use change in the Chesapeake Bay watershed (CBW), a region comprised 
of diverse physiographic provinces and a complex mosaic of land cover types, 
farming practices and land use management strategies.  Our results working in 
this region have practical implications for application to an even wider range of 
conditions. Decision-tree classification algorithms and associated decision rules 
have been developed using a combination of field data, digital Landsat, Ikonos 
and orthophoto (DOQ) imagery, and supporting geographic information system 
(GIS) coverages, including planimetric and land use maps contributed by 
numerous collaborators in the region.  We report on the development of these 
maps and methods, including local-scale to region-wide products useful for a 
broad range of resource management and decision-support applications.   
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1.1 Image Data Sets and Preprocessing 

A total of more than 150 Landsat scenes of the study area were acquired to map 
the 168,000 km2 CBW near the beginning and end of the 1988 - 2002 time 
period.  Of these, 40 scenes were fully processed for circa 1990 mapping, 
including leaf-on and leaf-off data, and 60 scenes capturing Spring, Summer and 
Fall conditions for circa 2000 mapping (Table 1).  
 

Table 1.  Landsat-7 ETM+ imagery. 

Approximate  
Time Period 

#TM/ETM+ 
Scenes 

1990 leaf-on 20 
1990 leaf-off 20 
2000 Spring 20 

2000 Summer 20 
2000 Fall 20 

Total 100 
 

Most TM and ETM+ images were acquired as Level 0 data from the USGS 
EROS Data Center (EDC) and processed to Level 1G. A configuration of data 
parameters was used to retain as much of the original geometric and radiometric 
properties as possible. All scenes were then radiometrically calibrated, 
converted to top-of-atmosphere reflectance, orthographically rectified using 
USGS 30m digital elevation data sets, corrected for topographic illumination 
effects, temporally normalized between scenes, and cloud and shadow masked 
[1].  A software package was developed for this Landsat data processing, and is 
now being adapted for general use through the Erdas Imagine image processing 
package [2].   

High-resolution Ikonos satellite imagery were also acquired over an 1800 
km2 area, primarily Montgomery county Maryland. These precision 
georeferenced data sets were acquired through the NASA Scientific Data 
Purchase program. While potentially useful for algorithm training, these images 
were used primarily for validation purposes. Very high spatial resolution 
imagery like Ikonos brings with it a whole new set of issues associated with the 
resolution of individual scene elements [3], nevertheless the images were 
successfully classified into tree cover maps, making use of forest cover 
interpreted from aerial photographs as training data.  Accuracy of the decision-
tree classification of tree cover was over 97%, as assessed with an independent 
validation sample of some 600,000 point locations [3].   

A sample of digital orthophoto (DOQ) images were also acquired 
throughout the region for validation across a broad range of conditions.  The 
DOQs were selected using a stratified random sample design, resulting in 
selection of 24 areas of 25 km2 (5x5 km) that were visually interpreted to 
produce maps of the built environment (i.e., roof, sidewalk, parking lot, etc.).   
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1.2 Classification Approach 

A classification and regression tree approach (CART) [4,5,6] was used to 
classify the multi-temporal imagery based on the spectral information extracted 
for areas within the training data sets.  The land cover type mapping was done 
using a classification tree and impervious surface area mapping (ISA, e.g., 
buildings, roads, parking lots) made use of a regression tree approach. The 
algorithm, in both cases, searches for a dependent variable that, if used to split a 
population of pixels into two groups, explains the largest proportion of deviation 
of the independent variable. At each new split in the tree, the same exercise is 
conducted and the tree is grown until it reaches terminal nodes, each 
representing a unique set of image areas that are then assigned a specific class 
based on the training information. In the case of the regression tree approach a 
continuous variable is output (e.g. proportion impervious between 0-100%).  
The two approaches differ primarily in the number of terminal nodes that are 
produced, and the mode in which the node characteristics are applied to produce 
output image maps.  We have developed software to produce output images 
compatible with Erdas Imagine from the S-Plus CART statistical software.   
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Figure 1. Example decision tree used to classify land cover into a number of terminal 
nodes (classes) following a series of hierarchical binary splits.  
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2 Land Cover Type Mapping 
 

Land cover was mapped into 16 classes approximating a modified Anderson 
level-2 hierarchical classification scheme [7].  Over 3800 field sites were 
sampled for training data, including more than 1400 sites visited by us in the 
Summers of 2000 and 2001.  The remainder of the training data were acquired 
from a host of collaborators and publicly available data sets.  All field data were 
screened for quality and representation of  surrounding land cover / use through 
application of a 90x90m spatial filter. 

The map produced from the classification tree algorithm using the field 
training data (Figure 1) was an improvement on previous land cover maps of the 
region, particularly with respect to discrimination between agricultural crops and 
grassland types.  Classification errors were comparable between rates of 
omission and commission, suggesting no systematic biases in the mapping 
approach  [2]. 

To evaluate the contribution of multi-temporal information for the 
classification, three independent decision tree runs were performed for: (i) a 
single peak growing season date, (ii) leaf on – leaf off dates, (iii) multi-temporal 
(all available) dates. When compared to the single date imagery alone, 
incorporation of the multi-temporal data into the analysis improved 
discrimination of specific classes, particularly those dominated by vegetation. 
Differences among deciduous, evergreen, and mixed forest types as well as 
among croplands, pastures, and grasslands were improved over single-date and 
two-date acquisitions. Discrimination of urban and suburban areas, however, did 
not significantly benefit from multi-temporal image acquisitions.  

2.1 Crop Type Mapping 

An agricultural crop type map was produced for the state of Maryland using 
unsupervised classification and iterative cluster labeling based on detailed field 
level information. Unique access to field-level crop data collected by the USDA 
National Agricultural Statistical Service (NASS) was granted for the state of 
Maryland, allowing us to digitize field boundaries from mylar map overlays.  
Over 300 individual fields were digitized and multispectral data extracted 
without reference to proprietary field location information.  These data provided 
a valuable training data source for use in classification of specific crop types.  
Although double-cropping is common in the mid-Atlantic (typically a 2-year 3-
crop rotation), use of multitemporal ETM+ imagery permitted discrimination of 
these multi-cropped areas.  Validation using county aggregated statistics 
compiled from all NASS field samples (over 1200 locations) suggested 
accuracies in the range of 90-95% [8].  The Maryland crop type map for year 
2000 is available from NASS or UMD upon request.   
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Figure 2a. Chesapeake Bay watershed map of land cover. The watershed boundary is 
depicted in red, and state boundaries in white.  The yellow box outlines an area shown 
in more detail in Figure 2b. 
 

Figure 2b. Land cover map of CBW showing an enlarged segment of Figure 2a over 
the Baltimore - Washington, D.C. area.   
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3 Urban / Impervious Area Mapping 

Identification of impervious surface areas is important for a number of 
applications including accurate mapping of urban / suburban / commercial land 
uses, monitoring changes in these areas through time (i.e., exurban sprawl), and 
establishing links between the built environment and water quality / stream 
health.  Impervious areas can be relatively easily detected with single-date 
Landsat imagery, although substrates with similar spectral properties, such as 
bare soil in agricultural fields, required multitemporal imagery and judicious 
processing for adequate discrimination (and subsequent removal).  Our subpixel 
estimation of ISA was accomplished with a combination of the Landsat imagery 
and planimetric data acquired for Montgomery county Maryland.  The 
planimetric data were converted from vector to 3m raster data, and then 
resampled to 30m spatial resolution while calculating proportional impervious 
cover for each 900m2 cell.  These data provided the basis for training the 
regression tree algorithm.  We note that Ikonos imagery could be used for this 
same purpose, and we have produced Ikonos impervious surface maps with 
accuracy comparable to the planimetric data, but because we had the planimetric 
data available we reserved the Ikonos for independent validation.  

The resulting subpixel Landsat ISA map, as assessed with the Ikonos and 
DOQ images, had an overall map accuracy of 88%.  There was some evidence 
for systematic commission errors resulting from residual bare or plastic-covered 
agricultural fields, and beaches [9].  Application of the approach to additional 
years using leaf-on / off TM imagery produced comparable maps of the 
Baltimore – Washington DC region for 1986, 1990 and 1996.  Specifying 
developed areas as >10% ISA allowed us to identify areas of change (Figure 4), 
calculate rates of change through time, and calibrate a spatial predictive model 
of future land use change under various policy scenarios [10].   

4 Conclusion 

We have provided an overview of a range of land cover and land use change 
products developed using multitemporal Landsat image data.  The advent of 
widely available and less expensive Landsat-7 ETM+ has permitted the 
development of highly accurate land cover map products.  Continued 
availability of comparable data sets will prove invaluable for data continuity and 
applications to resource management and decision support, with significant 
societal and economic benefits.  Similar advances in very high resolution 
observational data sets from the commercial sector (e.g., Ikonos and QuickBird) 
provide valuable synergy with the Landsat data for algorithm development and 
map product validation.   
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Figure 3. Crop type map produced from multitemporal Landsat ETM imagery for the 
year 2000.  An area outlined on the map is enlarged at upper right to show detail. 
   

 
Figure 4. Exurban sprawl in an area of northern Virginia and southwestern 
Maryland as mapped using ISA estimates from Landsat (1986, 1990, 1996, 2000). 
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