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ABSTRACT / We made use of land cover maps, and land
use change associated with urbanization, to provide esti-
mates of the loss of natural resource lands (forest, agri-
culture, and wetland areas) across the 168,000 km2

Chesapeake Bay watershed. We conducted extensive
accuracy assessments of the satellite-derived maps, most

of which were produced by us using widely available
multitemporal Landsat imagery. The change in urbaniza-
tion was derived from impervious surface area maps (the
built environment) for 1990 and 2000, from which we
estimated the loss of resource lands that occurred during
this decade. Within the watershed, we observed a 61%

increase in developed land (from 5,177 to 8,363 km2).
Most of this new development (64%) occurred on agri-
cultural and grasslands, whereas 33% occurred on for-
ested land. Some smaller municipalities lost as much as
17% of their forest lands and 36% of their agricultural
lands to development, although in the outlying counties
losses ranged from 0% to 1.4% for forests and 0% to 2.6%

for agriculture. Fast-growing urban areas surrounded by
forested land experienced the most loss of forest to
impervious surfaces. These estimates could be used for
the monitoring of the impacts of development across the
Chesapeake Bay watershed, and the approach has utility
for other regions nationwide. In turn, the results and the
approach can help jurisdictions set goals for resource land
protection and acquisition that are consistent with regional
restoration goals.

From upstate New York to the southeastern corner
of Virginia, hundreds of rivers and streams drain five
physiographic provinces across the 168,000-km2 Ches-
apeake Bay watershed (CBW). Home to a wide variety
of fresh and saltwater species, the Chesapeake Bay and
its tributaries provide valuable ecologic services and
economic benefits (Bockstael and others 1995; Cos-
tanza 2003). In presettlement times, much of the CBW
was forested, but conversion to agriculture took place
throughout the 18th and 19th centuries followed by
commercial and residential development (Horton
2003; Benitez and Fisher 2004).

The Chesapeake Bay Program (CBP), a regional
partnership that has coordinated the restoration of the

Chesapeake Bay since 1983, seeks to restore healthy
populations of fish and shellfish by reestablishing
submerged aquatic vegetation, protecting wetlands,
decreasing sediment and nutrient runoff, and
increasing water quality and clarity. Many of these goals
involve aspects of land use change such as restoring
and conserving riparian forest buffers, wetlands, and
areas of contiguous forest and decreasing suburban
development rates in forested and agriculture areas
(CBP 2000). To assess the feasibility of and progress
toward these goals, an accurate assessment of the cur-
rent development trends shaping the basin is required.

Impervious surface areas (buildings, roads, etc,) can
be used to directly measure the location, configuration,
and changes in development and provide indicators of
ecosystem health and function. Numerous studies have
shown that impervious surface areas increase the mag-
nitude and temperature of runoff, magnify the amount
of sediments and pollutants in runoff, and fragment
natural landscapes. A widely used indicator of stream
biotic impoverishment is impervious cover exceeding
10% of watershed area (Schueler 1994), although
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impoverishment may occur at <6% depending on ri-
parian buffer vegetation and landscape configuration
(Goetz and others 2003; Snyder and others 2005).
Reliable estimates of impervious surface area at local to
regional scales thus provide useful information to land
managers and policymakers to aid assessments and
targeting of stream condition and restoration potential
(Roth and others 2004).

Several methods have been used to monitor land
use and land cover change within the CBW. The Uni-
ted States Department of Agriculture’s National Re-
source Inventory provides statistical estimates that are
useful at broad spatial scales but become less reliable at
finer scales. The National Agricultural Statistics Service
and the Census of Agriculture provide county-level
estimates of land devoted to crops and pasture but do
not consider forested lands or subcounty spatial dis-
tribution of crops and pasture. The United States
Geological Survey (USGS) land use and land cover
data set provides regional land cover estimates derived
from aerial photographs, but manual interpretation
over large areas is time consuming and costly with long
repeat intervals and issues of interpreter consistency.

As the limitations of traditional methods to estimate
land cover and land use change have become more
apparent, use of satellite remote sensing has expanded
rapidly. The cost of remotely sensed data has steadily
decreased, and new classification techniques coupled
with higher-quality imagery have led to ever more
reliable land cover maps. The National Oceanographic
and Atmospheric Administration’s Coastal Change
Analysis Program (C-CAP) was developed in the mid-
1990s to map coastal land cover using satellite imagery.
The USGS Multi-Resolution Landcover Consortium
(MRLC) produced a 30-meter resolution land cover
map of the Mid-Atlantic region using 1990 Landsat
Thematic Mapper (TM) scenes and other ancillary data
(Vogelmann and others 1998). The overall spatial
accuracy of the land cover classifications was good, al-
though some difficulty distinguishing between certain
land cover classes was encountered (Roth and others
1999).

A recent approach to land cover and land use
change classification involves the use of decision tree
algorithms trained with high-resolution data sets
(Hanson and others 1996; Friedl and others 1997;
Rogan and others 2002). This method allows for the-
matic or continuous outputs and has been used to
create accurate maps at local to regional scales (Brown
de Colstoun and others 2004; Goetz and others 2004a).
The National Land Cover Database (NLCD) now uses
this approach (Homer and others 2002) rather than
unsupervised classification as in the earlier MRLC

(Vogelmann and others 1998). We note that for this
reason, together with the use of different land cover
class definitions, the 1990 MRLC and 2000 NLCD na-
tional land cover products are not comparable and
cannot be simply differenced to identify land cover
change at fine scales.

Satellite mapping focused specifically on urban
areas has also progressed rapidly (see review by Tatem
and Hay 2004). Most recently this work has focused on
mapping the built environment as represented by
continuous (0% to 100%) estimates of impervious
surface cover using decision tree classifiers (Yang and
others 2003a; Goetz and others 2004b). Other recent
‘‘subpixel’’ impervious surface mapping has made use
of neural network algorithms (Flanagan and Civco
2001), spectral mixture models (Ji and Jenson 1999;
Phinn and others 2002), and a suite of related tech-
niques (see Tatem and Hay 2004).

Our objectives were to estimate the extent and rates
of urbanization (suburban and exurban development)
and to assess the impact of this land use change on
natural resource lands (forest, agriculture, and wet-
lands) throughout the CBW. Using subpixel impervi-
ous surface maps to define developed or built areas, in
conjunction with land cover maps (Goetz and others
2004b), we provide reliable estimates of the increase in
urbanization from 1990 to 2000 and quantify the loss of
resource lands since 1990 associated with this change.
Because similar changes are occurring nationwide,
even worldwide, this work has wide application and
provides techniques and information essential to the
land management process for mitigation, prioritiza-
tion, targeting, and restoration.

Our primary study area for these analyses focused
on the counties that are contained within or that
intersect the watershed of the Chesapeake Bay
(Fig. 1). Although this area is somewhat larger than
the land area of the Chesapeake Bay drainage basin, it
is important to include the full extent of all counties
because this is the political unit at which many land
use management decisions will be implemented.
However, we report estimates of new development
between 1990 and 2000 and the associated loss of
natural resource lands for both the full study area and
the CBW.

Methods

Overview

To provide a range of estimates of resource land
loss since 1990, we used two independently developed
land cover maps, the MRLC (Vogelmann and others
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1998) and ours, referred to as mid-Atlantic Regional
Earth Science Applications Center (MA-RESAC)
(Goetz and others 2004b). The most conservative re-
source land loss estimates were made using the
intersection of both maps, i.e., where both agreed on
a given land cover type classification. We note that we
define natural resource lands strictly by their mapped
extent and do not attempt to address the ecologic or
economic values of these areas (e.g., CBP 2005a).
Before calculating resource land loss estimates, we
conducted rigorous accuracy assessments of the vari-
ous land cover type and impervious surface cover map
products.

To estimate the error associated with the data sets,
and our analysis, we assessed the accuracy of the
1990 and 2000 impervious surface maps and evalu-
ated different impervious surface area change
thresholds to identify the most robust measure of
impervious surface change. We also conducted

accuracy assessments of our 1990 land cover map as
well as the map created by intersecting the two 1990
land cover maps.

Land Cover–Type Maps. The MRLC map was derived
using data from 45 Landsat TM scenes, acquired be-
tween 1987 and 1992, that were georeferenced, or-
thocorrected, and projected to a Lambert Azimuthal
coordinate system. An unsupervised classification
algorithm was used to identify classes according to a
modified C-CAP classification scheme (Dobson and
others 1995) incorporating ancillary data sources used
to refine the classification. In particular, spatial data
from the National Wetlands Inventory (NWI) and
other sources were incorporated into the final map
for the wetlands classes (Vogelmann and others
1998). For consistency with the MA-RESAC 1990 land
cover map, we reprojected the MRLC map to UTM/
NAD83 coordinates and clipped it to the same geo-
graphic extent.

Figure 1. The principle study area is the
extent of the counties that intersect or that are
contained within the CBW boundary, although
we also focused on resource land loss estimates
within the watershed itself. CBW = Chesapeake
Bay Watershed.
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The MA-RESAC 1990 land cover map was developed
with many of the same TM scenes used by the MRLC
but augmented where possible with additional scenes,
acquired subsequently, that had decreased cloud cover.
Scene dates ranged from 1988 through 2002 including
both leaf-on and leaf-off imagery to aid cover type
discrimination. Georegistration of all images was done
using the orthorectified GeoCover image database as a
reference, which accounted for topographic distor-
tions as well as horizontal displacement. All subject
scenes were verified to have <0.5-pixel spatial mis-
registration (representing an area <15 m on the
ground) as measured using root mean square error
between the reference and subject scenes. A range of
image preprocessing steps were conducted to ensure
the scenes were consistent radiometrically across the
region and through time (Goetz and others 2004b).

Rather than using an unsupervised classification
approach, the MA-RESAC map was produced with a
decision tree algorithm using a modified Anderson
Level II classification. The natural land cover classes
were derived solely from spectral characteristics of the
imagery (Goetz and others 2004a). We also created a
land cover map using areas of agreement between the
1990 MA-RESAC map and the 1990 MRLC map. For
ease of comparison, to decrease errors, and to increase
utility, we collapsed the more specific categories of
resource land into three general categories: forests,
agriculture, and wetlands (Fig. 2).

Finally, we used a current (2000) land cover map
that included agricultural areas (Goetz and others
2004a) to mask commission errors in the impervious
cover maps, discussed later, that were associated with
fallow or bare soil areas. The satellite imagery used for
the 2000 land cover and subpixel impervious surface
maps included 60 spring, summer, and fall Landsat 7
ETM + scenes acquired between 1999 and 2001, which
were extensively preprocessed for image consistency
(Goetz and others 2004b). The level-1 images were
orthocorrected using the National Elevation Database

digital elevation model while simultaneously georefer-
encing them to the Earthsat GeoCover database.

Impervious Surface Maps. To create the 2000 impervi-
ous surface map, the same 60 Landsat-7 ETM + scenes
were used with a vector planimetric database of Mont-
gomery County, MD, consisting of hand-delineated
polygons of impervious surfaces (roofs, streets, side-
walks, etc.) as interpreted from aerial photographs. By
rasterizing or ‘‘gridding’’ the vector planimetric data, a
3-meter resolution impervious surface coverage was
derived. The number of 3-meter cells within each
overlying 30-meter cell was then enumerated to pro-
duce a 30-meter image of continuous subpixel imper-
vious surface values ranging from 0% to 100%. This
provided the training data used to develop the decision
tree algorithms to map subpixel impervious surface
values using the satellite imagery. In other words, the
impervious surface values of each 30-meter area in the
county could be associated with spectral characteristics
of the corresponding Landsat pixel.

A set of predictor variables were derived from the
Landsat TM/ETM+ bands, which included the nor-
malized difference vegetation index (NDVI) and the
first three principal components of the six band image
data (Crist and Cicone 1984). Two additional multi-
season variables—maximum NDVI and maximum
greenness—were also included. The decision tree was
then crossvalidated to select the smallest set of variables
that adequately explained variations in the data (Goetz
and others 2004a).

To minimize commission errors (false positives),
any impervious surface values <10% were assigned a
value of zero in the final map (Fig. 3). In an effort to
further decrease commission errors, we developed a
mask consisting of areas that were classified as agri-
culture in both the 1990 MRLC and 2000 MA-RESAC
land cover maps and used this to screen consistently
bare agricultural areas, which can have surface reflec-
tance properties similar to those of impervious sur-
faces. We conducted extensive efforts to discriminate

Figure 2. Generalization of the resource land cover classes in the two data sets.
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these areas from one another using both automated
and manual (visual-screening) techniques as well as the
agricultural cover–type masking, which had classifica-
tion accuracies of 90% to 95% (Goetz and others
2004a).

To create the 1990 impervious surface map, the
circa 1990 Landsat 5 TM imagery was used instead of
the circa 2000 Landsat 7 ETM+, and a decision tree
algorithm was developed to detect the extent of
impervious surface land cover. For training data, we
identified a subset of the Montgomery County, MD,
planimetric data set where no change had occurred

between 1990 and 2000. To identify areas of no
change, we used a vector grid consisting of 689 2.2-km2

rectangular cells. Using the 1990 and 2000 Landsat
imagery as reference, we noted whether or not change
had occurred in each cell and whether or not the
planimetric data were complete. We identified 193
training blocks containing complete planimetric
coverage with a high certainty of no change. Where a
pixel was identified as having been developed in 1990,
information regarding the proportional value of
impervious surface within each 30-m cell was derived
from the 2000 data set. Although this method fails to

Figure 3. Subpixel impervious
surface data for the study area
for 2000.
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detect intensification of development, limitations of
the Landsat 5 sensor and the historic images available
prevented direct estimation of fractional impervious
surfaces for 1990 at the same level of accuracy achieved
for the 2000 data set.

To create an impervious surface change map, we
identified areas that underwent change between 1990
and 2000. Previously undeveloped cells, where we
observed an increase in impervious surface area ‡20%

between 1990 and 2000, were found to produce a
robust estimate of change, thus we used 20% Im-
pervious Surface Area (ISA) change as a minimum
threshold defining recently developed areas. Filtering
out single isolated pixels of change—which in some
cases may have resulted from the commission errors,
edge effects, or spectral mixing that occurs in Landsat
pixels—created a second, more conservative change
map.

Validation Data Sets. To assess the accuracy of the
MA-RESAC 1990 land cover–type map, the same aerial
photo reference data set that was used to assess the
1990 MRLC land cover map was used. This also allowed
for direct comparison of the two land cover maps. The
validation data set consisted of 202 1:40,000 aerial
photos from the National High Altitude Photography
Program (NHAP) distributed across the entire wa-
tershed (Roth and others 1999). The photos were
randomly selected, and a stratified random selection
process was used to select 1,166 points within the
photos. Of these, a total of 783 points fell within the
extent of the CBW. Fourteen points were unusable
because they either fell on a boundary of two photo-
interpreted polygons or had no data associated with
them; thus, the final sample size was 769.

The 1990 and 2000 impervious surface maps were
validated using two sets of high-resolution digital or-
thophoto quarter quadrangles (DOQQs). The 1990

impervious surface reference data consisted of 64 0.3-
km2 DOQQs with a cumulative area of 19.2 km2 dis-
tributed across 6,030 km2 of the Piedmont physio-
graphic province near Washington, DC. The extent of
impervious surfaces in the DOQQs were visually iden-
tified and manually digitized, and the type of impervi-
ous cover (e.g., roof, street, sidewalk, parking lot, etc.)
was also noted. The resulting vector file was then
converted to a 3-meter raster. To make a direct com-
parison between these high-resolution maps of imper-
vious surfaces and the estimates of subpixel impervious
surface area derived from Landsat imagery, the 3-meter
cells were summed within overlying 30-meter cells to
create a 30-meter continuous image of impervious
surface percentage estimates.

The 2000 impervious surface map validation data
consisted of 12 5.9-km2 interpreted DOQQs with a
cumulative area of 70.8 km2 spread across 54,264 km2

of the central and northern portions of the watershed
provided by the NLCD (Yang and others 2003b). Al-
though the 1990 reference data set provided additional
information regarding the type of impervious surfaces,
the 2000 data set represents only the extent of imper-
vious surface features, See Table 1 for a summary of
the data sets used to validate each map.

Validation

Land-Cover Maps. Assessments of the MRLC cover-
type map were made using several methods reported
elsewhere (Vogelmann and others 1998; Roth and
others 1999) and summarized here. Land cover classi-
fications were assessed with point-to-point comparisons
between the NHAP data set and the MRLC map. In
addition, the selected pixels in the MRLC map were
compared with any pixel in a 3 · 3–pixel block, cen-
tered on the MRLC pixel, in the NHAP data set. Fol-
lowing the MRLC validation effort (Roth and others

Table 1. Summary of data sets used to validate the MA-RESAC circa 1990 land cover map and the 1990 and
2000 impervious surface area maps

Target map
Total area
(km2) of validation data

Extent within
CBW (km2) Source type Date range

1990 MA-RESAC
land cover

6.2a 168,000 NHAP 1987–1997
(Roth and others 2000)

1990 ISA 19.2 6,030 DOQQ 1990–1992
2000 ISA 70.8 54,264 DOQQ Late 1980s to 1990s

(Yang and others 2003b)

aSeven Hundred and Sixty Nine points, each representing approximately 0.008 km2.

CBW = Chesapeake Bay watershed.

DOQQ = Digital orthophoto quarter quadrangles.

ISA = Impervious Surface Area.

MA-RESAC = Mid-Atlantic Regional Earth Science Applications Center.

NHAP = National High Altitude Photography Program.
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1999), we considered a pixel classification correct if any
one of the 9 pixels in the overlying NHAP data set were
matched. If not, the mismatch (error type) was attrib-
uted to the majority class in the 9-pixel window. This
one-to-many comparison was done with the 11 original
land cover classes and also with similar cover class types
grouped together. A point-to-point comparison is the
most accurate, but it can amplify spatial mismatch. The
one-to-many point comparison decreases spatial mis-
match and was therefore used as the primary estimate
of accuracy, but it can increase the possibility of chance
agreements. Comparisons of spatial agreement as well
as class area estimates were made with C-CAP and
LUDA data. Area estimates for agricultural classes were
compared with 1992 Census of Agriculture data (Roth
and others 1999).

To compare land cover classes between the 1990
MA-RESAC land cover map and the NHAP data, it was
necessary to collapse the multiple developed classes
and the multiple wetland classes into two clas-
ses—developed and wetlands—respectively. In the
NHAP data set, we also merged the bare rock and
transitional classes into one class to correspond with
the MA-RESAC barren class. This decreased the num-
ber of classes to 11 for both data sets (Table 2). For
each NHAP data point, we identified the center pixel
of a 3 · 3–pixel window centered on the data point
with the corresponding pixel of the MA-RESAC map.
Following the method used by the MRLC (Roth and
others 1999), we compared the selected MA-RESAC
pixel with any pixel in the 3 · 3–pixel window in the
NHAP data set.

Finally, we combined the similar land cover classes
(Table 2), resulting in 8 classes, and again performed a
one-to-many analysis. This allowed us to quantify the
effect that confusion between similar land cover classes
had on agreement between the data sets. We per-
formed the same one-to-many analysis on the land
cover agreement map.

Impervious-Surface Maps. To measure spatial agree-
ment between our 1990 impervious surface map and
the 1990 DOQQs, we reclassified both data sets as
binary impervious/not impervious by characterizing
pixels >10% impervious as developed (i.e., part of the
built environment). We then overlaid the data sets
and quantified the areas of agreement and disagree-
ment. In addition, we compared the MA-RESAC con-
tinuous (subpixel) impervious surface estimates with
similar estimates calculated from the DOQQs. We
made comparisons using 2,586 samples (approxi-
mately 13% of the data set) where both had non-zero
values.

Because the 2000 DOQQ data set was considerably
larger than the 1990 data set, we randomly selected
10,127 non-zero samples (approximately 12% of the
data set) to perform a correlation analysis between
continuous impervious surface estimates in the satellite
maps relative to observed impervious estimates derived
from the DOQQs. Again, to measure spatial extent
agreement, we also performed an overlay analysis be-
tween the binary on/off DOQQ impervious extent and
the binary satellite-derived impervious surface map.
Thus, we conducted accuracy assessments of both the
amount (%) and the spatial extent of impervious cover
as mapped with the satellite imagery.

Changes in the Built Environment: 1999 to 2000. The
amount and location of change in the built envi-
ronment was estimated by simply differencing the
1990 and 2000 impervious surface area maps. Areal
estimates of developed land in 1990 and 2000 were
calculated by summing the area of all pixels with an
impervious surface percentage value of at least 10%.
Areal estimates of change were also calculated on a
per-pixel basis. We derived a second, more conser-
vative change map where single pixels were re-
moved.

We also tested the effects of increasing the thresh-
old of impervious surface changes. Thresholds are
based on differences in subpixel impervious surface
values between 1990 and 2000. A 20% threshold
represents pixels with ‡20% increase in impervious
surface between 1990 and 2000. We evaluated thresh-
olds ranging from 20% to 50% in 10% increments for
the initial change map and the derivative map of
change with single pixels removed.

Table 2. Land cover classes used in the comparison
of the MA-RESAC land cover map and the NHAP data
seta

Eleven-class
classification scheme

Eight-class
classification scheme

Water Water
Developed Developed
Barren Barren
Extractive Extractive
Deciduous forests
Evergreen forests Forests
Mixed forests
Pasture/hay Agriculture
Croplands
‘‘Grass’’ ‘‘Grass’’
Wetlands Wetlands

aBrackets indicate classes in the 11-class scheme that were combined to

create the 8-class scheme.

MA-RESAC = Mid-Atlantic Regional Earth Science Applications

Center.

NHAP = National High Altitude Photography Program.

gf
f g
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Calculation of Resource Lands Loss

Using map overlays, we calculated four different
estimates of resource land loss. First, we overlaid the
initial impervious surface change map on the three
maps of 1990 land cover (i.e., MA-RESAC, MRLC, and
the land cover agreement map). For the most conser-
vative estimate of resource land loss, we used the fil-
tered impervious surface change map to estimate
change on the land cover agreement map. A graphical
representation of our analysis is depicted in Figure 4.
This technique allowed us to identify the land cover
classification of pixels that experienced change be-
tween 1990 and 2000 and provided a range of esti-
mates. It also gave us area estimates and geographic
distribution of natural resource lands converted to
impervious surfaces.

Results

Data Sets

Land-Cover Maps. The 1990 MA-RESAC land cover
map was visually similar to the MRLC map, and class
area estimates were comparable. The MA-RESAC map
estimated that 56% of the CBW was forest, 29% agri-
culture, and 4% was wetland. This compared with
MRLC estimates of 60% forest, 26% agriculture, and
3% wetland.

The results of the overlay of the two land cover maps
show high levels of agreement between forests and
agriculture classes in terms of both classification and
area estimates (Table 3). Agreement for the wetland

class was lower and indicates important differences in
the two maps for this class. Areas classified as wetlands
by MRLC agreed with the MA-RESAC map 78% of the
time, whereas the MA-RESAC wetlands classification
agreed with the MRLC map only 56% of the time. In
addition, the MA-RESAC map estimates for wetland
area was almost 30% higher than the MRLC estimate.

Across classes, the MRLC map generally agreed
more frequently with the MA-RESAC than the reverse.
Classes where the MA-RESAC classification agreed with
the MRLC map at a rate <50% included extractive
(46%), barren (8%) and ‘‘grass’’ (46%). Because the
total mapped area for these classes was low, these dif-
ferences contributed little to overall map disagree-
ment. Overall agreement was 89% with a kappa value of
0.81.

Combining the land cover maps resulted in a de-
crease in the area of land available for analysis because
areas of disagreement were essentially eliminated.
Areas of disagreement totaled 29,194 km2, which was
11% of the total analysis area. We noted that the effect
of these differences was a decrease in of the area of
resource lands that could be considered in the analysis.
For example, where new development occurred over
areas of disagreement, 76% was classified as forests,
agriculture, or wetlands by the 1990 MA-RESAC. For
the MRLC map, 49% was classified as a resource land
cover class, and 29% was classified as low-density resi-
dential. Although the use of two land cover maps in-
creased our confidence in the accuracy of the 1990
land cover classification, it resulted in conservative
estimates of resource lands lost to development.

Impervious-Surface Maps. In 1990, pixels that were at
least 10% impervious surface cover comprised an area
of 6,705 km2 of the study area. By 2000, developed
pixels of at least 10% impervious cover had increased
61% to 10,806 km2. Within the watershed, developed
pixels increased 62% from 5,111 km2 in 1990 to 8,363
km2 in 2000. If the subpixel values are used to estimate
the actual impervious surface area (e.g., CBP 2005b), a
41% increase in impervious surface area within the
watershed is observed from 2,473 km2 in 1990 to 3,480
km2 in 2000. The change map for the study area con-
sisted of impervious surface pixels representing previ-
ously undeveloped areas that had experienced an
increase ‡ 20% in impervious surface area between
1990 and 2000 (Fig. 5). A 3,083-km2 portion of the
study area experienced an increase in impervious sur-
face area of at least 20%. Pixels that showed an increase
of 20% to 50% accounted for 65% of new development.
When single pixels of impervious surface change were
removed from consideration, the total amount of new
development decreased by > 598 km2 to 2,485 km2.

Figure 4. A series of map overlays was used to create four
different estimates of resource land loss. This flow chart
illustrates the map overlays that were used to create the esti-
mate of resource land loss based on the initial impervious
surface change map and the land cover agreement map.
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Figure 5. New impervious surfaces that appeared between 1990 and 2000 in Montgomery County, a suburban county adjacent
to Washington, DC.

Table 3. Confusion matrix showing hectares of agreement and disagreement and percent agreement by class
between the MRLC and MA-RESAC land cover mapsa

MRLC

Water Development Extractive Forests Agriculture Wetlands Barren ‘‘Grass’’ %Agree

MA-RESAC
Water 1537631 7756 2998 43297 13176 38369 1701 280 93
Development 12600 503753 9154 192787 243321 4271 17301 15875 50
Extractive 116 425 45165 983 262 36 219 15 96
Forests 30382 233393 22397 13858086 139982 104650 79013 12475 96
Agriculture 11689 96171 14124 1002029 6348420 19859 40509 6842 84
Wetlands 55070 15449 2919 326094 72562 600125 7614 576 56
Barren 1060 2301 739 258 144 697 12480 16 71
‘‘Grass’’ 349 10921 559 682 1942 207 813 30872 67
% Agree 93 58 46 90 93 78 8 46

Class Area (km2)
MA-RESAC 16452 9991 472 144804 75396 10804 177 463
MRLC 16489 8702 981 154242 68198 7682 1597 670
% Difference 0.2 13 52 6 10 29 89 31

aTotal class area in square kilometers estimated by each data set is also indicated.

MA-RESAC = Mid-Atlantic Regional Earth Science Applications Center.

MRLC = Multi-Resolution Landcover Consortium.
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Validation

Land-Cover Maps. For their one-to-many compari-
son with the NHAP data, the MRLC researchers re-
ported overall agreement of 74% and a kappa
coefficient of 0.66 across the 11 land cover classes
(N = 769) (Table 2). The major source of confusion
was between specific agricultural classes. When row
crops and pasture were combined into one class,
overall agreement increased to 84%, and the Kappa
value increased to 0.78. Another noted area of con-
fusion was within forest classes (Vogelmann and
others 1998).

For the 1990 MA-RESAC land cover map one-to-
many analysis using 11 land cover classes, the kappa
value was 0.54, and overall agreement was 59%. Like
the MRLC map, the major sources of confusion for
natural resource classes were similar natural resource
classes. For example, mixed forest classes were pri-
marily confused with either deciduous or evergreen
classes. Pasture and cropland classes were confused
primarily with each other. Predictably, agreement in-
creased when we combined similar forest and agricul-
tural classes to create a classification scheme of just 8
classes overall (Table 2). Kappa increased to 0.67, and
overall agreement increased to 73%.

Of the three land cover maps, the land cover
agreement map had the lowest rates of commission
and omission errors compared with the NHAP data.
The sample size decreased to 590 points because 179
points fell within areas of disagreement between the
MRLC and MA-RESAC land cover maps. Summaries of
commission and omission errors for the three land
cover maps for the target land cover classifications are

shown in Table 4. Kappa for the agreement map was
0.77.

Impervious-Surface Map Validation. Overall spatial
agreement between the 1990 MA-RESAC impervious
surface map and the DOQQs was 79%. Spatial agree-
ment for the 2000 impervious surface map with the
relevant DOQQs was higher: at 83% (Table 5).
Comparisons between mapped and DOQQ estimates
of subpixel (continuous) impervious surface values
produced a correlation of 0.61 for 1990 and 0.68 for
2000 (Table 6). Large omission errors in the 1990
MA-RESAC impervious surface map–where the aerial
photo measured 70% to 100% imperviousness and the
MA-RESAC map measured 0%—made up 12% of total
omission errors. Sixty-nine percent of those 12%

occurred in areas defined as transitional (recently
cleared or disturbed areas) in the DOQQs, suggesting
they may have been developed after the satellite
imagery was acquired.

Table 4. Summaries of commission and omission
errors, compared with the NHAP data points, for the
three land cover maps for the target land cover
classifications

Land cover class Omission (%) Commission (%)

MRLC
Forests 37 17
Agriculture 26 24
Wetlands 7 34

MA-RESAC
Forests 32 28
Agriculture 19 33
Wetlands 12 36

LCA
Forests 26 16
Agriculture 17 19
Wetlands 4 30

NHAP = National High Altitude Photography Program.

LCA = Land Cover Agreement map.

Table 5. Spatial agreement between 1990 and 2000
impervious surface maps and classified DOQQs

Data of IS map Hectares %

1990
Omission 319 18.4
Commission 45 2.6
Agreement 1367 78.9

2000
Omission 875 12.1
Commission 377 5.2
Agreement 6028 82.7

DOQQ = Digital orthophoto quarter quadrangles.

IS = Impervious surface.

Table 6. Results of correlation analysis of 1990 and
2000 mapped impervious surface values against
impervious surface values derived from classified
DOQQs

Date of IS map

1990
R = 0.61
P £ 0.05
Slope = 0.61
N = 2,586

2000
R = 0.68
P £ 0.05
Slope = 0.66
N = 10,127

DOQQ = Digital orthophoto quarter quadrangles.

IS = Impervious surface.

Urbanization and the Chesapeake Bay Watershed 817



Temporal inconsistencies also existed between the
2000 DOQQs and the 2000 MA-RESAC map. Unfor-
tunately, the impervious surface type in the circa 2000
DOQQs was not specified, so it was not possible to
determine the specific type of omission errors that may
have occurred because of temporal differences.

As we increased the change threshold from 20% to
50%, the amount of new development detected de-
creased significantly (Table 7). As the threshold in-
creased from 20% to 30%, the amount of new
development decreased by 33% for the initial imper-
vious surface change map and 29% for the filtered
change map. Increasing the threshold from 20% to
50% resulted in a 65% decrease for the initial change
map and a 61% decrease for the filtered change map.
The effect of filtering out single, isolated pixels of
change was also apparent. Using a 20% threshold of
change, the initial map showed 3,083 km2 of new
development, whereas the filtered change map showed
2,485 km2, nearly 20% less than the initial estimate.
Differences between the two maps were smaller at
higher impervious surface change thresholds, indicat-
ing that many of the single pixels had low impervious
surface change values.

Observed Resource Land Loss

Forest, Agriculture, and Wetland Loss: 1990 to 2000. Most
of the new impervious surface areas were in the form of
low-density development at the edges of urban areas
(e.g., Fig. 6). Resource lands losses in square kilometers
are presented in Table 8 for each case, and Figure 7
shows the proportion of class area lost for full study area
(A) and for the watershed only (B).

The MA-RESAC land cover map generally provided
slightly higher estimates of resource land loss than the
MRLC land cover map. The most conservative esti-
mates of resource land loss were those calculated using
the development map with single pixels removed and
the land cover agreement map. Agricultural lands
experienced roughly twice as much loss as forests de-
spite occupying about half of the area. Wetlands

experienced the least overall loss and showed the
largest differences in estimates between the different
land cover maps.

Hot Spots of Resource Lands Loss. Because the satellite
data products capture fine-scale information across the
landscape, we were able to aggregate the statistics on
land transitions to specific political and management
units (e.g., counties, watersheds, etc.). The different
patterns of forest and agricultural land consumption
across the CBW are depicted for counties in Figure 8
for the estimates derived from the initial change map
and the land cover agreement map. Because of our
uncertainties associated with wetland loss, discussed
later, we do not present maps of wetland loss. We
found that some smaller municipalities, particularly
those adjacent to growing urban centers such as Nor-
folk and Richmond in Virginia, lost as much as 17% of
their forest lands and 36% of their agricultural lands to
development (Figs 8A and B). High losses are also
observed in the counties near Washington, DC, Balti-
more, MD, and Philadelphia, PA. Outlying counties
further from rapidly urbanizing centers experienced
losses from 0% to 1.5% for forests and 0% to 2.5% for
agriculture. The spatial pattern of these ‘‘hot spots’’ of
change was different depending on the resource land
considered, with the greatest losses of forest land
concentrated in southern Virginia, but also concen-
trated around the Washington, DC, metropolitan
region. Agricultural land losses were largely focused on
these same areas but also included a cluster of counties
in south-central Pennsylvania and across Delaware.

When considered as a proportion of the loss that oc-
curred over the entire study area, i.e., focusing on the
contribution that each county in the region made to
total resource land loss, we found a different spatial
configuration of the hot spots of regional importance
(Figs. 8C and D). Some of the counties surrounding
Richmond, VA, were responsible for 2.0% to 3.8% of the
total forest loss in the watershed. Similar levels of
deforestation were observed in northern Virginia, cen-
tral Maryland, and a chain of counties extending along
the Wilkes-Barre–Scranton area of Pennsylvania. The
effects of development pressure from Washington, DC,
and Philadelphia, PA, were even more apparent in the
map of agriculture loss, where some counties in eastern
Maryland, Delaware and southern Pennsylvania each
accounted for 2.5% to 6.3% of the total regional loss.

Discussion

Data Sets

The MRLC and MA-RESAC maps are qualitatively
similar products in terms of the forest and agriculture

Table 7. The area in km2 of new impervious surfaces
detected between 1990 and 2000 using different
percentage impervious surface change thresholds for
the initial change map and the map with single-pixels
removed (‘‘single-pixel filter’’)

Change
threshold (%)

Initial change
map

Single-pixel
filter

20 3,083 2,485
30 2,056 1,770
40 1,489 1,320
50 1,085 979
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classes. Thus, we have high confidence in estimates of
the extent of these land cover categories in the land
cover agreement map. We do note differences in the
wetland class, however. The MRLC map incorporated
wetland data from ancillary sources, primarily the
United States Fish and Wildlife Services NWI. As they
note, this data set was (and still is) at various stages of
completion at the time MRLC was released, and the

data sources used for generating NWI data ranged
from 1971 to 1992. Furthermore, it is known that the
NWI data set is conservative in delineating wetlands
and does not capture many smaller and isolated wet-
land areas (Vogelmann and others 1998).

In this analysis, we found that where the MRLC map
identifies wetlands, there is relatively good agreement
with the MA-RESAC map (Table 3). The extent of

Figure 6. Loss of forests and agriculture that occurred between 1990 and 2000 in northern Virginia.

Table 8. Estimates of resource lands lost to development between 1990 and 2000 using different land cover
maps: MA-RESAC, MRLC, and an agreement map where both the MA-RESAC and MRLC classifications agreea

Extent MA-RESAC MRLC Agreement map Single-pixel filter

Full extent
Forests 826 758 504 388
Agriculture 1,543 1,450 1,266 1,016
Wetlands 60 4 2 2

Watershed only
Forests 573 530 334 259
Agriculture 1,130 1,025 903 717
Wetlands 44 3 2 1

aIn the last case (‘‘single-pixel filter’’), single pixels were removed from the impervious surface change map, and resource land loss was estimated

using the agreement map. Estimates for the full extent of the study area and for the watershed area only are reported in km2. Note that 1 km2 =

2477 acres.

MA-RESAC = Mid-Atlantic Regional Earth Science Applications Center.

MRLC = Multi-Resolution Landcover Consortium.
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wetlands identified in the MA-RESAC map, however, is
almost 30% higher than the MRLC map, and in these
areas of disagreement we cannot adequately judge the
accuracy of the classification without additional field
visits.

The impervious surface maps for 1990 and 2000
provide a unique opportunity to identify areas that
have undergone development during this decade. In
addition to providing assessments of resource land loss
such as those presented here, this data set offers the
prospect to explore many aspects of land cover change
processes over a large area with relevance to a range of
land management issues and mutlistate efforts focused
on restoration of the Chesapeake Bay (Goetz and
others 2004b).

An analysis of this area in comparable detail would
not be possible with any other currently existing data
sets. The NLCD released 2000 subpixel impervious and
land cover–type maps of an area encompassing
approximately one third of the CBW (NLCD mapping
zone 60) using a similar approach to that described
here. In addition to having incomplete coverage of the
watershed, there is no corresponding NLCD/MRLC
ISA map for an earlier time period on which changes
in the built environment could be assessed. Moreover,
even if it were possible to compare land cover–type

classes from the 1992 MRLC and 2001 NLCD maps,
this would result in an urban presence absence-type
map that would provide substantially less detailed
estimates of the magnitude of change in the built
environment or its associated impact on resource
lands.

Because we used consistent methods to develop the
1990 and 2000 impervious surface maps, and have
conducted the extensive accuracy assessment described
here, we have known confidence in the changes and
errors associated with different mapping techniques.
The accuracy assessments derived from comparisons
with high-resolution aerial photos also provide the
likely source, magnitudes, and directions (omission vs.
commission) of the estimated mapping errors.

Validation

This represents the first assessment of the MA-RESAC
land cover map for 1990. In this analysis, we used the
same data set that was used to assess the MRLC map,
providing a direct comparison between these two data
sets, which were produced using different classification
techniques. When compared with the NHAP reference
data set, both classifications achieved acceptable accu-
racy levels for the forest and agriculture classes. Con-
sidering only those areas where both maps agreed
maximized agreement with the NHAP data set. As pre-
viously noted, however, the sample size of the NHAP
validation data set is small given the size of the study area,
and temporal inconsistencies between the air photos
and the Landsat imagery likely contributed to decreased
levels of quantitative similarity (Vogelmann and others
1998). That the MRLC and MA-RESAC data sets dis-
played high agreement for the forest and agriculture
classes lends credibility to both data sets despite these
uncertainties. As discussed above, issues with the wet-
land classifications in both data sets remain.

We note that agreement between ‘‘developed’’-type
classes in the land cover maps was not high, but these
type classes were not used in our analysis because ur-
ban areas were much more accurately captured in the
impervious surface maps that we used to represent
urban change. The impervious maps also allowed for
better representation of developed land gradients.
Moreover, the primary impact the relatively poor
agreement in the urban types had on our analysis is
that it removed from consideration resource lands
(particularly forest areas) that fell in more developed
areas; thus, it has the effect of making our estimates of
resource land losses that much more conservative.

Throughout the analysis we used different tech-
niques to quantify and decrease errors in the impervi-
ous surface maps. Removing pixels classified as

Figure 7. Resource land loss normalized by the class area for
each land cover map. (A) shows estimates for full study ex-
tent, (B) shows estimates for the CBW only. CBW = Chesa-
peake Bay watershed.
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impervious where both the 1990 MRLC map and the
2000 MA-RESAC map classified them as agriculture
minimized commission errors caused by bare
agricultural fields. Issues arise from using this method
when impervious surface areas are considered agricul-

ture in both land cover maps, but results from the
validation of the 1990 MRLC map indicate this occurs
across a very small area. Of the 244 points classified as
urban by the NHAP data set, 13 were classified as
agriculture in the 1990 MRLC map (omission). Of the

Figure 8. The upper two maps shows the percentage of forest (A) or agriculture (B) lost between 1990 and 2000 in each
county. The lower two maps shows the percentage contribution of each county to the total loss of forest (C) or agriculture (D) in
the study area.
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232 points classified as urban in the 1990 MRLC map,
15 were classified as agriculture in the NHAP data set
(commission). Of the 140 points classified as urban in
the NHAP data set, 7 were classified as agriculture in
the 1990 MA-RESAC map (omission), and of the 132
points classified as urban in the 1990 MA-RESAC map,
just 1 was classified as agriculture in the NHAP data set
(commission). Accuracy of the 2000 MA-RESAC land
cover map, again used in this study simply to decrease
errors associated with bare agricultural fields in the
impervious change map, was even better for a number
of reasons including more extensive and recent train-
ing data sets, improved quality and fidelity of Landsat
ETM+ imagery relative to older Landsat TM, and
multidate seasonal imagery rather than two-date leaf-
on and leaf-off conditions (Goetz and others 2004a,
2004b).

As in the assessments of the MRLC and MA-RESAC
land cover maps, our errors in the impervious surface
maps could be fewer than what we calculated because
of temporal differences in the validation data sets.
Changes in land cover that occurred after the satellite
scenes were taken likely contributed to our assessment
of omission errors. For the 1990 impervious surface
map, for example, the majority of the largest omission
errors occurred in areas defined as transitional in the
aerial photos.

We decreased errors in the impervious surface
change map by using a 20% threshold for change. Al-
though the 20% threshold was not the most conserva-
tive estimate we could provide, it captured the most
change without resulting in unacceptable trade-offs
between omission and commission errors. Although
the use of the filtered change map provided the most
conservative estimate of resource land loss, omission
errors increased. Specifically, low-intensity, dispersed
development was predominantly detected as single
pixels in remotely sensed data sets. By excluding single
pixels, we increased omission errors in low-intensity
developed classes, but we decreased commission errors
in sites that were commonly detected as single pixels.
This trade-off of errors is an important consideration
and is discussed further in the next section.

Potential sources of error in the impervious surface
maps included our use of training data from only one
county in Maryland and radiometric variation between
different Landsat scenes to which the decision tree
algorithm was applied. Montgomery County contains a
variety of development types, from high-intensity urban
to low-intensity exurban sprawl, and our accuracy
analysis results across much larger areas indicated that
these are representative of the greater study region. An
area of greater concern, and one we took great efforts

to address, was radiometric variation between scenes
and across acquisition dates. Extensive preprocessing
of the 100 + Landsat scenes we used for this analysis was
conducted to address this as was removal of clouds,
cloud shadows, topographic distortion and illumina-
tion variations, and geometric orthorectification for
locational precision necessary for change detection
work (Goetz and others 2004a,b).

As a result of this attention to consistency across the
image data sets, as well as the quality of the training
data and the classification methodology used to create
the land cover and impervious surface maps, they were
in good agreement with the validation data sets. We
further minimized any remaining sources of error by
calculating conservative estimates of loss based only on
areas where both of the 1990 and cover type maps
agreed.

Observed Resource Land Loss

By overlaying maps of newly developed impervious
surface areas on land cover maps at the beginning of
the observational period, we were able to produce
estimates and maps of resource lands impacted by land
development associated with the urbanization process.
These maps are already being used from the local to
the entire watershed scale to address land management
issues.

Most of the resource land loss throughout the wa-
tershed occurred on agricultural lands (64%). Home
buyers are increasingly willing to live further away from
places of employment in exchange for more open
space, lower housing costs, and more land on which to
build. Predictably, counties with a significant amount
of agricultural lands near fast-growing urban areas
experienced the highest rates of agricultural land
conversion. Although overall loss of agricultural lands
across the entire CBW was approximately 2%, when
viewed at finer scales the amount of loss was quite
variable, with some counties experiencing losses >30%.

Fast-growing urban areas surrounded primarily by
forested lands experienced the most loss of forest to
impervious surfaces. Other sources of forest loss were
second-home building in relatively undeveloped areas
and in-fill in urban areas. We expect actual forest loss
to be higher than what we measured because of con-
version of forest to other land uses besides
development, such as crops and pasture, as well as
timber harvesting, which we did not measure. We also
noted that during this 10-year period, the amount of
change associated with transitions from abandoned
agriculture to woodland or forests was not likely to be
very large, and agricultural lands are being converted
to residential development much faster than they are
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reverting to forest. A final point on this topic involves
the use of categoric and cover maps of forest cover that
may include patches of trees found in residential areas.
Our forest type classes, however, were relatively
homogenous across the landscape, suggesting that
most isolated patches of ‘‘forest’’ were mostly included
in other cover-type classes, such as low-intensity devel-
oped. These areas would not be included in estimates
of resource lands loss. In future work, we hope to
incorporate use of continuous subpixel tree cover
maps, which are currently nearing completion and
undergoing accuracy assessment to be reported in a
follow-on article.

Much of the wetland change was detected as single
pixels or groupings of two or three pixels. Because of
our concerns regarding the wetland classifications in
the MRLC and MA-RESAC maps, discussed previously,
we emphasized the most conservative estimate of wet-
land loss using the combined 1990 land cover map
considering areas of agreement only. This is undoubt-
edly an underestimate. Although wetland areas are
notoriously difficult to map using optical remote
sensing, particularly forested wetlands, we believe the
range of wetland loss estimates provides land managers
an opportunity to decide whether the shortcomings of
these estimates outweigh the interest in having at least
a range of values otherwise only available through the
NWI mapping activity, which has a range of other
limitations including timeliness and omission of smal-
ler and more isolated wetlands. We are currently con-
ducting wetland-mapping work using radar remote
sensing of wetlands in the region, but the maps are not
yet ready for use, and their discussion is beyond the
scope of this article.

In general, we provided a range of likely resource
land losses that can be interpreted for a comparable
range of land-management applications. For example,
the filtering of single pixels will decrease the amount
(and location) of development in areas that we know
have a relatively high likelihood of having changed to a
low-intensity residential land use characteristic of
exurban sprawl. We included results of both the fil-
tered and unfiltered results so the user of the data sets
can weigh the considerations for specific management
or planning objectives. Our intent was to provide the
best possible estimate of change and loss of resource
lands and also to bound the upper and lower limits.

Conclusion

Land use changes and associated losses of resource
lands have not previously been calculated at this level
of spatial detail for the CBW or, as far as we are aware,

across any comparably sized area. Assessments of resi-
dential and commercial development impacts on re-
source lands were made possible by the use of subpixel
classification algorithms that used Landsat image data,
from which we used a 20% change in impervious cover
threshold to define areas as having been developed.
This level of spatial resolution could not otherwise
have been achieved without much larger mapping er-
rors than those we have documented. Accuracy was also
improved by extensive processing of the imagery to
ensure a high degree of geometric fidelity and radio-
metric consistency between scenes (Goetz and others
2004a, 2005b). Moreover, our estimates of resource
land losses include a range of possible values because
they were assessed for areas where two different and
independently developed maps (MRLC and MA-RE-
SAC) were produced. The more conservative estimates
were derived from the use of both land cover maps and
considered only those areas where they agreed that any
given area was accurately classified as a resource land
(whether forest, agricultural, wetland).

In our most conservative estimate, we calculate that
at least 388 km2 of forest lands, 1,016 km2 of agricul-
tural lands, and 2 km2 of wetlands, have been lost to
commercial and residential development within the
CBW since 1990. As much as 826 km2 of forests, 1,543
km2 of agricultural lands, and 60 km2 of wetlands have
been converted, although we emphasize the more
moderate results derived from the land cover agree-
ment map indicating losses of 504 km2 for forests,
1,266 km2 for agricultural lands, and 2 km2 for wet-
lands. However, we would expect functional losses,
particularly for forests and wetlands, to be much higher
because of increased edge effects and fragmentation
(e.g., Brown and others 2000; Riiters and others 2002).

If these rates of conversion continue, we suggest it
will be difficult for the CBP to meet its targeted
objectives of constraining the loss of forest and agri-
cultural lands by 30% by the year 2012 (CBP 2000).
Indeed, rates of loss at the municipal scale could be
significantly higher. The results we present here can be
used to improve the targeting and monitoring process
and aid adaptive management practices aimed at
modifying behaviors, particularly in those specific
locations where our maps show that the greatest
changes have occurred.

The same or similar approaches can be used in
other areas, particularly with the increased availability
of land cover map products from various sources.
Nevertheless, it is important that rigorous accuracy
assessments be conducted, and that a range of resource
land loss is presented, including the most conservative
estimates that the data are capable of providing. We
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have attempted to do both of these in the analyses
presented here, which have increasing relevance in a
rapidly urbanizing world.

Our current work is focused on addressing vulner-
ability of resource lands to urbanization by using a
combination of spatial predictive models including
those based on resource allocation of population
growth projections and associated housing demands,
microeconomic theory associated with land value and
related probabilities of conversion, and cellular auto-
mata models that employ a range of rule-based growth
parameters (proximity, attraction, etc.). We will report
on those results in a follow-up publication.
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