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Arctic tundra ecosystems stand to play a substantial role in both the magnitude
and rate of global climate warming over the coming decades and centuries. The
exact nature of this role will be determined by the combined effects of currently
amplified rates of climate warming in the Arctic (Serreze et al 2000) and a series
of related positive climate feedbacks that include mobilization of permafrost
carbon (Schuur et al 2008), decreases in surface albedo (Chapin et al 2005) and
evapotranspiration (ET) mediated increases in atmospheric water vapor (Swann
et al 2010). Conceptually, these feedback mechanisms are intuitive and readily
comprehensible: warming-induced permafrost thaw will make new soil carbon
pools accessible for microbial respiration, and increased vegetation productivity,
expansion of shrubs in particular, will lower surface reflectance and increase ET.
However, our current understanding of these feedback mechanisms relies largely
on limited and local field studies and, as such, the quantitative estimates of
feedback effects on regional and global climate require spatial upscaling and
uncertainty estimates derived from models. Moreover, the feedback mechanisms
interact and their combined net effect on climate is highly variable and not well
characterized.

A recent study by Bonfils et al (2012) is among the first to explicitly examine
how shrub expansion in tundra ecosystems will impact regional climate. Using an
Earth system model, Bonfils et al find that an idealized 20% increase in shrub
cover north of 60◦N latitude will lead to annual temperature increases of 0.66 ◦C
and 1.84 ◦C, respectively, when the shrubs are 0.5 m and 2 m tall. The modeled
temperature increases arise from atmospheric heating as a combined consequence
of decreased albedo and increased ET. The primary difference between the two
cases is associated with the fact that tall shrubs protrude above the snow, thus
reducing albedo year round, whereas short shrubs are completely covered by the
snowpack for part of the year.

These results support evidence that shrub expansion in Arctic tundra will feed
back positively to ongoing climate warming but, perhaps more importantly,
illustrate the significance of shrub height in dictating the feedback strength. While
differences in albedo associated with vegetation stature have been previously
documented in these ecosystems (Loranty et al 2011, Sturm et al 2005a), the
magnitudes of the feedbacks on regional climate were unknown. These findings
highlight a pressing need to understand the rate and spatial extent at which shrub
expansion is occurring. While increases in vegetation productivity inferred from
satellite data have been observed across the Arctic (Bunn and Goetz 2006, Goetz
et al 2005, Walker et al 2009), recent analyses suggest that the observed trends
are a result of general increases in productivity across all vegetation types (Beck
and Goetz 2011).

Another important finding reported by Bonfils et al (2012) is the positive
correlation between shrub height and modeled active layer depth (i.e. permafrost
thaw). Results from a field study (Blok et al 2010) showed that the shading
effects of shrub canopies reduce ground heat flux, which in turn leads to a
decrease in active layer depth. Bonfils et al’s (2012) results indicate that regional
warming as a consequence of albedo and ET feedbacks will offset the local
cooling effects of increased shrub cover, thus the net climate feedback associated
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with shrub expansion could be greater than reported (owing to biogeochemical
processes and related feedbacks). A similar study by Lawrence and Swenson
(2011) found that snow redistribution to shrub covered areas (Sturm et al 2005b)
simultaneously reduced the albedo feedback by covering shrubs with snow and
introduced a soil warming feedback through insulation provided by additional
snow cover, with a net result of increased active layer depth under shrubs. When
shrub cover (1 m tall canopy) was increased by 20% and less snow was available
for redistribution over a greater shrub covered area, the insulation effect was not
great enough to offset the reduction in albedo, thus on average the effect of shrub
cover on active layer depth was negligible. These results underscore the
importance of shrub height, shrub cover and snow depth when considering how
shrub expansion will influence net feedbacks to climate.

Uncertainties regarding the interacting effects of snow redistribution and
albedo feedbacks on active layer depth make it difficult to predict how shrub
expansion may ultimately mediate permafrost feedbacks to climate on annual to
decadal timescales. Although both Bonfils et al (2012) and Lawrence and
Swenson (2011) provide strong evidence that the albedo and ET feedbacks
associated with a 20% increase in shrub cover, relative to the current distribution,
will result in warming that more than offsets local cooling, the effects of a 5% or
10% increase in shrub cover are less clear. For example, it may be reasonable to
assume that a 20% increase in shrub cover over the next 100 years will lead to a
1.84 ◦C regional temperature increase and, consequently, substantial permafrost
thaw. But will a 0.46 ◦C increase over the next 25 years with a 5% increase in
shrub cover significantly increase the active layer depth or melt permafrost? The
regional warming associated with a 5% increase in shrub cover may not be strong
enough to counteract the local cooling effects of shrubs (Blok et al 2010), in
which case increased shrub cover could serve as a negative feedback to
permafrost thaw in the near term, retarding the process, or even promoting
permafrost aggradation. On the other hand, it is possible that the greater snow
redistribution that would occur with less shrub cover (Lawrence and Swenson
2011) could lead to higher rates of winter warming that would offset the local
cooling effects caused by shading during the growing season, thereby acting as a
positive feedback to permafrost thaw. These feedbacks could either mitigate or
exacerbate permafrost degradation associated with ongoing climate warming;
thus research on this subject is essential and timely given the rates of shrub cover
change documented by historical photographs (Tape et al 2006) and satellite
imagery (Forbes et al 2010).

A complete understanding of the net climate feedback effects of shrub
expansion in Arctic tundra will require improved knowledge of the factors
controlling shrub distribution and the associated vegetation structure influences
on the redistribution of snow. A recent synthesis highlights the myriad complex
and interacting factors that are likely to govern shrub expansion, which include
recruitment and dispersal mechanisms, species differences, topo-edaphic factors,
and the role of disturbance and biotic interactions (Myers-Smith et al 2011). In
the context of understanding climate feedbacks, it is imperative that future studies
distinguish between instances of shrub expansion that include an increase in
canopy height or extent that is biophysically relevant. Increased effort is needed
to understand snow–shrub interactions in the context of surface energy fluxes.
This level of detail is necessary for accurate prediction of the rate and magnitude
of shrub mediated climate feedbacks in the Arctic.
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