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Abstract. We examined the utility of Landsat Thematic Mapper (TM) imagery
for mapping residential land use in Montgomery County, Maryland, USA. The
study area was chosen partly because of the availability of a unique parcel-level
database of land use attributes and an associated digital map of parcel
boundaries. These data were used to develop a series of land use classifications
from a combination of leaf-on and leaf-off TM image derivatives and an
algorithm based on ‘decision tree’ theory. Results suggest potential utility of the
approach, particularly to state and local governments for land use mapping and
planning applications, but greater accuracies are needed for broad practical
application. In general, it was possible to discriminate different densities of
residential development, and to separate these from commercial/industrial and
agricultural areas. Difficulties arose in the discrimination of low-density
residential areas due to the range of land cover types within this specific land
use, and their associated spatial variability. The greater classification errors
associated with these low-density developed areas were not unexpected. We
found that these errors could be mitigated somewhat with techniques that
consider the mode of training data selection and by incorporation of methods
that account for the presence and amount of impervious surfaces (e.g. pavement
and rooftops).

1. Introduction

Remote sensing has increasingly been used to map urban development patterns

(Masek et al. 2000, Stuckens et al. 2000, Ward et al. 2000, Stefanov et al. 2001).

Much of this work has utility for the development of spatially explicit models of

land use change (Geoghegan et al. 1997, Gunter et al. 2000, Jantz et al., in press).

Effectively mapping residential land use is particularly important for exurban

growth models that focus on the individual property owner, as they require fine-

scale property parcel information (Bockstael 1996). It has been difficult to achieve

this type of mapping with satellite imagery except at very high (1–4m) spatial

resolution (Barnsley and Barr 2000, Kontoes et al. 2000, Goetz et al., in press), but
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fine resolution imagery is prohibitively expensive for mapping very large areas

(w1000 km2). This creates a dilemma for meeting the planning needs of many

rapidly changing jurisdictions.

The metropolitan area around the District of Colombia (Washington DC)

provides an example of the jurisdictional challenges with rapid land use change. A

total of 37 784 residential building permits were issued in the DC area in 1999

alone; on average over 29 000 were issued per year over the past 10 years (National

Association of Home Builders 2001). This rate of development has had implications

for traffic, air pollution, water quality, land value, and infrastructure costs such as

utilities and schools (Burchell et al. 1998, Leggett and Bockstael 2000). In the USA,

the spatial pattern of this conversion has tended to be one of increasingly frag-

mented, low-density development, popularly called exurban sprawl or simply

‘sprawl’. Sprawl is characterized by land conversion at a rate of 2–3 times the rate

of population growth and by increases in vehicle miles travelled of 4–5 times the

population growth rate (Burchell et al. 1998).

In order to effectively map and monitor rates of sprawl, image classification

methods must be developed to allow mapping of residential land use with widely

available remotely sensed observations, such as those from the Landsat series of

Thematic Mappers (TM). Furthermore, monitoring techniques based on analysis of

individual landowner decision-making, such as some econometric models, require

land use data at a very fine scale. Identifying individual parcels of low-density

residential development (built parcelsw0.5 acres), which are the fastest growing and

most land consumptive forms defining exurban sprawl (Bockstael 1996), would be

particularly useful.

Our objectives were to develop a technique for mapping residential density at

the parcel level using Landsat TM imagery, and to distinguish these parcels from

agriculture and commercial/industrial parcels. The primarily challenge of this effort

is determining the spectral characteristics of individual parcels such that spectrally

similar land use classes can be separated. Development of the approach would

allow precise land use mapping in areas that do not have parcel-level property data

available, and would permit expansion of the temporal domain throughout the

Landsat TM era when parcel data were not available. These developments would be

of particular benefit for agent-based econometric modelling efforts (see Geoghegan

et al. 1997). Distinctions between land uses with spectrally similar land cover types

are notoriously difficult to accomplish with remote sensing, but potential benefits

for land use monitoring and planning in an age of extensive exurban sprawl are

great (Goetz et al., in press).

2. Study area and methods

2.1. Study area

We focused our study on Montgomery County, Maryland, on the northern

border of Washington, DC (figure 1). The county contains a diverse mixture of land

uses typical of exurban areas, including a ‘high-technology’ corridor characterized

by dense commercial/industrial land use along a major transportation corridor. The

county also has a moderately successful rural preservation programme that has

preserved a portion of the county in traditional agricultural land uses and in

forested parks and reserves (Maryland National Captial Parks and Planning

Commission 2000).
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Working in the county permitted us access to numerous land cover/use products

available through collaborating partners. A geo-referenced parcel-level tax database

exists for Maryland, and Montgomery County Parks and Planning Commission

provided a digitized planimetric map of all county parcels. These rich datasets, and

the county’s willingness to share resources and utilize our results, made it an

excellent site in which to develop a land use mapping technique and identify the

possibilities of residential land use mapping from Landsat imagery.

Of the nearly 300 000 parcels within the county, 76.6% were coded as residential.

These were separated into density classes based on the number of housing units per

acre, allowing us to examine the capability of TM imagery to differentiate

residential densities while also identifying non-residential land uses that have

similar spectral properties as detected by the Landsat 5TM sensor. These include

similarities between high density residential and commercial land uses, and between

low density residential and agricultural parcels with built structures.

2.2. Satellite sensor data

The input data for the classification was Landsat 5 TM imagery. Cloud-free TM

images for path 15 row 33 were collected in leaf-off (27 March 1998) and leaf-on

(28 April 1998) conditions. The imagery was orthorectified using manual control

point selection and 30m National Elevation Data (NED) digital topographic maps.

It was georeferenced using nearest-neighbour resampling to a Universal Transverse

Figure 1. Study area map of Montgomery County, Maryland, USA, within the Chesapeake
Bay Watershed and the mid-Atlantic region.
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Mercator (UTM) projection (zone 18, GRS 1980 spheroid, NAD83 datum), and

specifying a 30m output cell size. Additional processing steps were used to obtain

parameters for input to the classification algorithm, including converting the raw

image pixel values to units of absolute radiance values for each of the visible and

near-infrared channels (bands 1–5 and 7).
Normalized Difference Vegetation Index (NDVI) images were derived from the

visible and near-infrared band images (differences divided by sums), and an NDVI

difference image, comparing NDVI before and after the canopy loses foliage (leaf-

on versus leaf-off), was calculated to assist discrimination of residential land uses in

highly heterogeneous areas where vegetation varies widely from cell to cell.

Brightness, greenness and wetness (i.e. constrained principal component) images

were calculated for the two scenes and were used as input to the classification

algorithm. The ratio of band 5 to band 1 was included as an indicator of soil

moisture, aiding in the discrimination of unvegetated areas (e.g. exposed soil) from

impervious surfaces (e.g. concrete, pavement).

The input images were fused to create a single image of the TM scene containing

all of the raw image data and the derived layers. The area encompassing Mont-

gomery County was extracted from this composite input image and was used

exclusively. Non-parametric predictor variables, such as population data and parcel

boundaries, were available but not included in the classification in order to attempt

development of a land use mapping technique that would be transferable to areas

for which such datasets are unavailable. Similarly, texture images were not

included. Texture analyses, such as spatial frequency models and mixture models,

are useful for discriminating land uses in highly heterogeneous landscapes by

considering the spatial arrangements of neighbouring pixels. We avoided these

inputs, however, in order to isolate and test the potential for classifying individual

pixels using the decision-tree classifier approach. One of our objectives was to

determine if, using a very rich training dataset, we could discriminate subtle

differences in spectral signatures at the pixel level. This would avoid the problem of

textural metrics being specific for a given TM scene, and it would make

classification algorithms more generally transferable to other TM scenes.

2.3. Land use data for algorithm training

Training data for the classification algorithm was identified using the 1997

MdProperty View, Maryland’s digitized tax database. Developed by the Maryland

Department of Planning, MdProperty View links digitized versions of the state’s

property maps to the State Department of Assessments and Taxation’s parcel

database, yielding a spatially explicit digital tax database with property-specific

data including ownership, acreage, land use zoning, size and value of the property,

and any improvements on the property. For every parcel, MdProperty View

contains a point centroid (not parcel polygon) which is linked to a database

containing over 100 attributes about the parcel. Training pixels for the classification

process were selected by querying these attribute fields to identify parcels which

represented different land use classes, and then using pixels from within those

parcels.

Training data were collected for each of six land use classes: low density

residential, medium density residential, high density residential, commercial/

industrial, agriculture, and a general class that contained all other land uses.
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The ‘general’ class consisted of known water areas and a sample of centroid points

from all land uses other than those listed above, including institutional properties,

country clubs, parks and others. While using a parcel’s tax code as a surrogate for

land use is generally reliable, the tax code for some parcels does not coincide with

the actual land use on that parcel, which can introduce errors in training data

selection. This problem was mitigated by selecting as training data only parcels with

a built structure, with the exception of the agriculture class.

The residential density classes were identified by querying MdProperty View for

parcels taxed as residential, containing a built structure and acreage coinciding with

the Maryland Department of Planning’s definition of residential density. Following

this definition, low density residential parcels are greater than or equal to 0.5 acres

but less than 5.0 acres. Medium density parcels are greater than or equal to

0.125 acres and less than 0.5 acres. High density residential parcels are less than

0.125 acres (Maryland Department of Planning 1998). Agricultural parcels were

identified from MdProperty View’s land use field, with no limitations on acreage.

Descriptive statistics for the land use classes are shown in table 1.
Coverages of the selected training points were overlayed on the composite input

image described in the satellite sensor data section above. For all cells underlying a

selected parcel centroid, values from the composite image were extracted, so that

each training pixel contained information from all of the layers of raw image data

and derived layers. Centroid points were thought to provide a representative sample

of the land cover found on each type of land use (Martin and Howarth 1989). For

high and medium density residential parcels, which are the equivalent size of only

one or two pixels, the centroid point was likely to fall, at least partially, on a built

structure, capturing the highly mixed land use patterns of high density residential

areas and potentially resulting in a unique reflectance pattern. Where the centroid

point did not fall on a built structure, the training data included other land cover

types found on those parcels (e.g. grass yards).

2.4. Decision-tree classification

A decision-tree classification software package, C 5.0 (Quinlan 1993), was used

for the land use classifications. Decision trees class data into hierarchical structures

through a process of recursive binary partitioning of predictor variables into

smaller, more homogeneous groups. A given algorithm searches for the dependent

variable that, if used to split the population of cells into two groups, would explain

the largest proportion of deviation of the independent variable. The process of

Table 1. Summary of 1997 MdProperty View data, Montgomery County, Maryland. The
‘Other’ land use class includes institutional properties and parks, among others. The
database includes 290 197 total parcels covering 292 777 total acres.

Land use class

Residential Commercial Industrial Agriculture Other

Parcels (% of total) 76.6 1.2 0.5 0.7 21.0
Total acres (% of total) 36.1 1.6 2.0 31.8 28.5
Mean acres 0.5 1.1 4.1 46.2 1.4
Max. acres 476 139 412 860 2607
With built structure (%) 92.1 74.5 68.5 49.3 44.4

Mapping residential density patterns 1081



binary partitioning results in traceable splits in the predictor variable data, and

these splits provide useful information about the properties of different land cover

types (Friedl and Brodley 1997). At each new split in the tree, the same exercise is

conducted and the tree is grown until it reaches terminal nodes, or leaves, with each

leaf representing a unique set of areas within the image. Every leaf has a land cover

type assignment. Trees can be pruned to eliminate or merge terminal nodes that do

not contribute to the overall classification accuracy of the decision tree. Decision

trees are strictly non-parametric and do not require assumptions regarding the

statistical properties of the input data. In addition, they handle nonlinear relations

between features and classes, allow for missing values, and are capable of handling

both numeric and categorical inputs. Decision trees also have significant intuitive

appeal because the classification structure is explicit and therefore easily inter-

pretable. The technique has been shown to provide a robust statistical method by

which to predict land cover types at regional and global scales from remotely sensed

data (e.g. Hansen et al. 1996, Friedl and Brodley 1997).

2.4.1. Classification scenarios

We used the decision-tree technique to classify residential land use types at a

very fine scale. The classification tree was constrained to a small number of land

uses in order to improve class separability and to assess discriminatory power. The

classification process was run five times, each time using a different sampling

scheme to train the algorithm. We refer to these as cases. The training datasets were

varied in terms of size, the proportions of different land use samples within the sets,

and the number of land use classes included (table 2). We analyse in detail only the

results from the two cases with the highest Kappa statistic.

Training data for Case 1 consisted of 12 890 points drawn randomly from four

land use classes: low density residential, medium density residential, high density

residential, and the general non-residential class, which included agriculture and

commercial/industrial parcels. The relative size of the land use classes represented in

the sample were in direct proportion to their occurrence in the state’s tax database.

Table 2. Description of the training datasets used for the five different cases of decision-tree
algorithm development. Case 1—proportional to size of MdProperty View parcel
database; Case 2—equal size training datasets for the residential density classes; Case
3—proportional to size, with full sample of MdProperty View parcels; Case 4—equal
size for the residential density classes with additional sampling for other classes; Case
5—same as Case 4 but with samples drawn throughout parcels rather than the
centroid. The results of Case 1 are referred to throughout as ‘residential density
mapping’, and the results of Case 4 are referred to as ‘land use mapping’.

Case

1 2 3 4 5

Non-residential 3800 4720 18 250 5000 5000
Low density 1270 1260 28 000 5000 5000
Medium density 5760 1260 103 500 5000 5000
High density 2065 1260 22 250 5000 5000
Agricultural – – – 2102 2102
Commercial/Industrial – – – 2863 2863
Total training size 12 890 8500 172 000 24 965 24 965
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Agriculture and commercial/industrial classes were not extracted separately for this

case to ascertain whether there was a distinct spectral signature associated with

residential parcels. The results of this case are analysed below in the section entitled

‘Residential density mapping’.

Training data for Case 2 consisted of 8500 points drawn from the same four

land use classes used in Case 1. The majority of training points used in this case

were drawn from the non-residential class, with the three residential density classes

each represented by an equal number of training points. The objective of this case

was to emphasize the non-residential class as the default in order to minimize errors

of commission in the residential classes. Based on the Kappa statistic the results of

this case were not analysed further.

Case 3 consisted of 172 000 training points also drawn from the three residential

classes and the non-residential class. The objective of this case was to include all

possible centroid points as training data in order to develop the most specific

spectral characterization possible for each land use class. The results of this case

were not analysed further.

The training dataset for Case 4 included the three residential classes and the

non-residential class, as well as separate agricultural and commercial/industrial

classes. The training set consisted of 24 566 points, with equal sample sizes from the

three residential classes and the non-residential class and smaller samples from the

agricultural and commercial/industrial classes (as the latter two classes were limited

in number). The objective of this training approach was to reduce the error term

experienced in previous cases by separating out specific non-residential classes that

might have significant spectral overlap with one or more residential class. The

results of this case are analysed below in the section entitled ‘Land use mapping’.

The training dataset for Case 5 was similar to that for Case 4, but the training

pixels for the low density residential class were collected from throughout low

density parcels, rather than from centroid points only. This was done by merging

low density residential centroid points from MdProperty View with a digitized

polygon property map for Montgomery County. The resulting polygon coverage

was used to extract attributes for sample cells falling throughout the low density

residential parcels. The objective of this approach was to capture the larger range of

reflectance values likely to be found on a low density residential parcel. The training

set consisted of 24 566 points, with equal sample sizes from the three residential

classes and the non-residential class and smaller samples from the agricultural and

commercial/industrial classes. Results of this case were not analysed further but are

addressed in the interpretation of results.

2.5. Accuracy assessment

Three methods were used to assess classification accuracy. Cross-validation

statistics were derived from the output of the decision-tree software, and additional

sampling of the MdProperty View was conducted for an independent accuracy

assessment. Visual assessment at very fine scales, comparing the classified TM

output and the MdProperty View data, was done to highlight issues associated with

classification accuracy.

For the cross-validation assessment, 25% of the training cells for each case were

withheld from the training process to be used in post-classification cross-validation.

The Kappa statistic was calculated as a measure of actual agreement and chance

agreement between training data and classified data (Kalkhan et al. 1998).
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Although there are limitations with the use of Kappa statistics to measure levels of

agreement, generally the closer the statistic is to 1.0, the higher the accuracy and the

further the classification is from chance agreement (see Monserud and Leemans

1992 and DeFries and Chan 2000 for more thorough assessments). Accuracy

assessments and associated errors of commission and omission were calculated

using the technique outlined in Congalton and Green (1999).

For the independent sampling assessment, land use data from the MdProperty

View point coverage was merged with Montgomery County’s digitized parcel

coverage to produce a polygon coverage containing the MdProperty View land use

data, from which independent sample pixels could be tested. This step allowed for

random selection of test pixels falling throughout any parcel, rather than only from

the centroid point. The error rate in merging the point data file with the polygon

data file, determined by the number of polygons not containing a single centroid

point, was 4%. From the merged polygon coverage, separate coverages were extracted

for each land use class (low density residential, medium density residential, etc.)

containing all parcels falling within that class according to the MdProperty View

data. For each of these individual land use coverages, the classified image output

was assessed to determine the accuracy of pixel classification. Again, Kappa

statistics and errors of commission and omission were calculated.

3. Results

3.1. Residential density mapping

Visual assessment of the residential density map, which contains the results from

the classification using Case 1 training data, showed success in distinguishing

between different densities of residential development. Figure 2 shows that medium

density residential areas were identified relatively well, as were clusters of high density

residential properties. Low density residential communities were discriminated but

with more disjunct patterns and ‘speckle’ within areas of medium and high density

residential. There were also indications of medium and high density residential

Figure 2. Distribution of classified samples in each MdProperty View land use class for the
residential density mapping Case 1.
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speckle within low density residential areas due to the presence of impervious

surface areas such as driveways and paved areas, which increase likelihood of

classification as medium or high density.

The cross-validation analysis of Case 1 yielded an overall accuracy of 71.6%,

with a Kappa of 0.56. Table 3 shows that the medium density residential class and

the general non-residential class were classified with over 80% accuracy. The low

density residential class had an accuracy of just 25%, with much of the error

attributed to confusion with the medium density residential class. The high density

residential class was classified accurately for 40% of cells, with the error again

attributed to confusion with the medium density class. Thus the amount of low and

high density residential area were underestimated and medium density areas were

overestimated.

Using independent sampling to assess Case 1, the overall accuracy was 53.8%

and the Kappa statistic was 0.25. Comparison of the decision-tree classification

with MdProperty View land use classes (table 4) shows that the highest accuracy

was in the non-residential and medium density classes. The other classes had

relatively high error rates (figure 3). In the low density polygon coverage, the error

was attributed to confusion with both the medium density residential class and the

non-residential class. In the high density polygon coverage, a high proportion of

cells again were classified as medium density residential. The medium density

residential class included the highest percentage of correctly classified cells, with

84% of all pixels within the medium density polygon coverage correctly classified.

Producer’s accuracies for the residential classes were less than User’s accuracies,

thus errors of omission were greater than those of commission (i.e. inclusion or

false positives).

Table 3. Results of cross-validation accuracy assessment for Case 1, residential density
mapping. The Kappa statistic was 0.56 and overall accuracy 71.6%. Omission errors
can be estimated as 100% less Producer’s accuracy, and commission (inclusion) errors
as 100% less User’s accuracy.

Classified as

Non-residential Low density Medium density High density

Non-residential 784 28 92 49
Low density 41 81 185 13
Medium density 37 75 1254 106
High density 60 17 211 189

Producer’s accuracy (%)
Non-residential 82.3 2.9 9.7 5.1
Low density 12.8 25.3 57.8 4.1
Medium density 2.5 5.1 85.2 7.2
High density 12.6 3.6 44.2 39.6

User’s accuracy (%)
Non-residential 85.0 13.9 5.3 13.7
Low density 4.4 40.3 10.6 3.6
Medium density 4.0 37.3 72.0 29.7
High density 6.5 8.5 12.1 52.9
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3.2. Land use mapping

Visual assessment of the land use map, which contains the results from the

classification using Case 4 training data, revealed a high degree of speckle and

misclassification of land use types. Agricultural parcels and high density residential

areas were identified (figure 2), but errors of commission were high for both classes

(tables 5 and 6). Medium and low density residential communities were intermingled,

and the commercial/industrial class showed little accuracy in this classification.

Cross-validation assessment showed a moderate Kappa statistic of 0.47.

Table 4. Results of independent accuracy assessment comparing the decision-tree classifica-
tion versus MdProperty View land use classes for Case 1, residential density
mapping. The Kappa statistic was 0.25 and overall accuracy 53.8%. See table 3 legend
regarding errors of omission and commission.

Classified as

Non-residential
Low

density
Medium
density

High
density

Non-residential 470 812 153 127 190.944 65 230
Low density 31 442 48 823 67 670 5451
Medium density 3789 10 087 110 610 7942
High density 1862 468 6449 4824

Producer’s accuracy (%)
Non-residential 53.5 17.4 21.7 7.4
Low density 20.5 31.8 44.1 3.6
Medium density 2.9 7.6 83.5 6.0
High density 13.7 3.4 47.4 35.5

User’s accuracy (%)
Non-residential 92.7 72.1 50.8 78.2
Low density 6.2 23.0 18.0 6.5
Medium density 0.7 4.7 29.4 9.5
High density 0.4 0.2 1.7 5.8

Figure 3. Distribution of classified samples in each MdProperty View land use class for the
land use mapping Case 4.
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Agricultural class had the highest Producer’s accuracy, with 231 out of 312 or 74%

of samples correctly classified (table 5). Classification of low density residential and

high density residential were improved over the ‘residential density mapping’

results, while accuracy of the medium density and the non-residential classes

dropped. The commercial/industrial class was just 34.7% accurate, with the

majority of error unexpectedly occurring in the low density residential class.

Assessment of the land use mapping results using the independent MdProperty

View polygon parcel coverage showed a substantial amount of error. Only the

agriculture class contained over 50% correctly classified cells (table 6). The medium

density residential and commercial/industrial classes were just over 40% correctly

classified. All land use polygon coverages showed speckle and an inability to

accurately separate residential density land use to the full extent of parcel

boundaries (figure 4).

4. Discussion

Of the five classifications that were conducted using different sampling methods,

only two of the five samples were examined in detail, based on overall accuracy and

the Kappa statistic of agreement. We assessed the most accurate and generally

applicable approach for residential density mapping (Case 1) and for broader land

use mapping (Case 4). The residential density mapping case showed high visual

correspondence with the MdProperty View land use data (figure 4). Residential

communities, including individual parcels of different densities, were identified from

Table 5. Results of cross-validation accuracy assessment for Case 4, land use mapping. The
Kappa statistic was 0.47 and overall accuracy 56.8%. See table 3 legend regarding
errors of omission and commission.

Classified as

Low
density

Medium
density

High
density Agriculture

Commercial/
Industrial Other

Low density 296 57 36 4 41 26
Medium density 51 318 92 0 3 46
High density 41 102 255 3 1 85
Agriculture 4 11 24 231 1 41
Commercial/Industrial 106 8 5 1 66 4
Other 52 68 113 51 3 254

Producer’s accuracy (%)
Low density 64.3 12.4 7.8 0.9 8.9 5.7
Medium density 10.0 62.4 18.0 0.0 0.6 9.0
High density 8.4 20.9 52.4 0.6 0.2 17.5
Agriculture 1.3 3.5 7.7 74.0 0.3 13.1
Commercial/Industrial 55.8 4.2 2.6 0.5 34.7 2.1
Other 9.6 12.6 20.9 9.4 0.6 47.0

User’s accuracy (%)
Low density 53.8 10.1 6.9 1.4 35.7 5.7
Medium density 9.3 56.4 17.5 0.0 2.6 10.1
High density 7.5 18.1 48.6 1.0 0.9 18.6
Agriculture 0.7 2.0 4.6 79.7 0.9 9.0
Commercial/Industrial 19.3 1.4 1.0 0.3 57.4 0.9
Other 9.5 12.1 21.5 17.6 2.6 55.7
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the Landsat imagery. The larger scale map in figure 5, while only a sample of the

area, reveals some of the issues associated with land use mapping at the pixel level.

The scattered medium and high density residential cells among what should be low

density residential parcels corresponded almost entirely to roads and other

impervious surfaces. Medium density parcels were occasionally identified as low

density when the structure was built at the fringe of the property and there was a

substantial portion of the remainder of the parcel in vegetation. Despite speckling

in the residential land use map, our results suggest that the approach is useful for

mapping residential development and discriminating residential parcels from

adjacent land uses. To a lesser extent, the approach was useful for discriminating

different densities of residential development from one another.

The map of land use (from Case 4) had greater errors in some land use types but

showed statistical improvement over Case 1 in residential density discrimination

because agricultural and commercial/industrial classes were specifically identified in

the training data. The addition of these classes helped separate non-residential

parcels that had land cover similar to that found in these residential classes.

Improvement in the high and low density classes came at the expense of somewhat

lower accuracy in the medium density residential class.

The results of Cases 2, 3 and 5 were not assessed extensively because of their

lower overall accuracies of 0.48, 0.38 and 0.44, respectively. Case 2 featured a large

sample of non-residential training points, which improved the selection of the

Table 6. Results of independent accuracy assessment comparing the decision-tree classifica-
tion versus MdProperty View land use classes for Case 4, land use mapping. The
Kappa statistic was 0.15 and overall accuracy 34.5%. See table 3 legend regarding
errors of omission and commission.

Classified as

Low
density

Medium
density

High
density Agriculture

Commercial/
Industrial Other

Low density 71 624 29 365 15 364 44 220 2165 71 624
Medium density 33 837 61 198 20 495 2205 650 14 285
High density 3010 5069 8154 3003 1112 6495
Agriculture 75 147 23 567 21 864 212 412 4430 79 727
Commercial/Industrial 3693 2720 5953 5819 18 904 7773
Other 166 710 73 148 74 865 306 925 41 727 216 738

Producer’s accuracy (%)
Low density 34.4 14.1 7.4 21.2 1.0 21.8
Medium density 25.5 46.1 15.4 1.7 0. 10.8
High density 11.2 18.9 30.4 11.2 4.1 24.2
Agriculture 18.0 5.6 5.2 50.9 1.1 19.1
Commercial/Industrial 8.2 6.1 13.3 13.0 42.1 17.3
Other 18.9 8.3 8.5 34.9 4.7 24.6

User’s accuracy (%)
Low density 20.2 15.1 10.5 7.7 3.1 12.2
Medium density 9.6 31.4 14.0 0.4 0.9 3.9
High density 0.9 2.6 5.6 0.5 1.6 1.8
Agriculture 21.2 12.1 14.9 37.0 6.4 21.5
Commercial/Industrial 1.0 1.4 4.1 1.0 27.4 2.1
Other 47.1 37.5 51.0 53.4 60.5 58.5
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non-residential class, but at the expense of accuracy in the residential classes. Case 3

consisted of the largest sampling set available but, importantly, did not improve

results. Case 5 included a low density residential training set that was drawn from

entire low density residential parcels, but this also did not improve classification

results. The high variability of accuracy between classifications produced through

Figure 4. Land use and residential density patterns across Montgomery County, Maryland.
(a) Residential density by parcel, coded from the MdProperty View parcel database
that was used for training; (b) residential density mapping (Case 1) derived from
Landsat TM; (c) land use mapping (Case 4) from Landsat TM.
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Figure 5. Residential density patterns in Gaithersburg, Montgomery County, Maryland. (a)
Residential density by parcel, coded from the MdProperty View parcel database that
was used for training; (b) Ikonos imagery overlaid with Montgomery County
property base map; (c) residential density mapping (Case 1) derived from Landsat
TM; (d ) land use mapping (Case 4) from Landsat TM.
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different training sampling methods emphasizes the importance of the mode of

sampling for training set selection. Decision-tree algorithms are known to require

large sample sizes (Friedl and Brodley 1997, Friedl et al. 2000), but our results suggest

that there are additional issues, which we address further in the following sections.

4.1. Training datasets

Even when extensive training data are available, as in this study, the size and

composition of the training data influence results. The low accuracy for Case 3

suggests that, in terms of sampling size, bigger is not necessarily better. We hypo-

thesized that a very large sampling size would capture more of the subtle variation

between land cover on different land use classes. Results suggest, however, that

with the large training set there was reduced likelihood of spectral discrimination

between land uses. A smaller training set of the most representative parcels in each

class apparently allows the decision tree to capture more of the differences in land

cover between land use classes. Thus the spatial distribution of sampling sites is at

least as, if not more, important than the size of the sample.

The number of classes included in the classification training set also influenced

the classification accuracy of individual land use types. The results of Case 4 show

that the three residential density classes were separated better when the agricultural

and commercial/industrial classes were included. Identifying these additional classes,

rather than lumping them in the general class, allowed them to be separated from

residential parcels that had similar land cover, reducing error in the classification

of residential densities. Increasing the number of training classes can improve

classification, although this introduces difficulties associated with identifying other

land use classes that can be spectrally defined accurately.

A third consideration associated with training set selection was the influence of

drawing training values from entire parcels (Case 5), which did not improve the

accuracy of the classification over training data selected from the parcel centroids

alone. Accuracy for the low density residential class from Case 5 was consistent

with other samples, but the overall accuracy decreased relative to Case 4, which was

drawn only from centroids. This confirms that the mix of land covers found within

low density residential parcels is not distinguishable spectrally from similar land

covers found on other parcels such as parks, institutions, or agricultural parcels.

While the size of the overall training sample did not improve results, the relative

size of each land use class in the training sample can influence results. The class

with the largest training sample tended to be over-selected because of the increased

variability of the class’s spectral range usually associated with a larger relative

sample. The high accuracy rate for the medium density residential class in Case 1

appears to be associated with the larger sample size for that class relative to other

residential areas (low and high density). More samples do not, however, necessarily

improve classification accuracy because they can result, in the case of residential

density discrimination, in greater commission errors.

4.2. Parcels versus pixels and land cover versus land use

A problem with mapping parcel level land use from TM is that larger parcels

exhibit higher variability in land cover. Just over two 30m cells fit within a 0.5 acre

parcel, the mean residential parcel size in Montgomery County. A high density

residential parcel is equivalent to the size of less than one 30m pixel. The largest
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low density residential parcel, 5.0 acres, is equivalent in area to 18 pixels and can

contain highly heterogeneous land cover.
Another challenge is the failure of cell boundaries to match parcel boundaries.

Resolution limitations cause pixels to extend beyond or overlap parcel boundaries.

This can introduce error both in training data selection and in classified output.

The primary challenge in mapping residential density from Landsat, however, is

that remote sensing imagery provides information on land cover, which does not

translate directly into land use information (Cihlar and Jansen 2001). Land cover

can be a surrogate for land use where the land cover is homogeneous and clearly

representative of a particular land use, such as a quarry, an agricultural field, or a

parking lot. Where residential development is of a high density and is highly

contiguous, it can be captured from TM imagery. It is more difficult to map land

uses for which the land cover is highly heterogeneous. While sensors can detect

radiances associated with the presence of built structures, it remains difficult to map

residential parcels of mixed land cover, particularly low-density residential areas.

Unfortunately these parcels are of greatest interest to land use change modellers

because these denote areas where land use is typically most rapidly transforming

(Bockstael 1996, Burchell et al. 2000), i.e. where exurban sprawl is occurring.

Mapping land use at the parcel level involves identifying all land covers on a

parcel, both built structures and other land covers, and grouping them together in

the same land use class. In order to correctly identify low density residential parcels,

for example, a classification technique must discriminate between residential structures

and other impervious surfaces, and between non-built cells on low density residential

parcels, such as yards, from non-built cells that occur on other parcels, such as

parks. Using the decision-tree technique with the MdProperty View data, we made

progress in mapping residential land use of higher densities but we were unable to

develop a general algorithm or ‘decision rules’ that could be applied to other

locations with sufficient confidence in mapping unit accuracy. Mapping parcel level

land use from Landsat imagery remains a difficult problem that requires extensive

and accurate training information, which must be sampled and applied judiciously.

In separate analyses we have developed algorithms to map impervious surface

areas (Smith et al., in press). While the presence of impervious surfaces indicates

human alteration of the landscape frequently associated with urbanization and

residential development, we found that including impervious surface coverages as

input in the classification process did not substantially improve our ability to map

different densities of residential land use. The amount of impervious surface area

increased with the density of development, but there was significant overlap in the

amount of impervious area among adjacent density classes. For example, low

density residential areas had impervious area ranging from 5 to 30%, medium

density from 10 to 40%, and high density from 20 to 80%. The differences between

the means of these classes were statistically significant (pv0.001), partly because of

the very large sample sizes, but the amount of impervious land cover was not a

good predictor of residential land use because of the wide range of land cover

within these land use categories.

5. Conclusions
There is a great deal of interest in mapping residential density patterns because

of the rapid transformation of exurban lands through what has commonly come to
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be known as ‘suburban sprawl’, which is best captured through monitoring the

development of low-density residential areas. We have tested a method of resi-

dential land use classification using a decision-tree classifier and found that there

are inherent limitations to mapping residential density in a complex area of

heterogeneous land use such as suburban Maryland. Classification accuracies were

insufficient to provide an algorithm or decision rules of general practical utility that

can be transferred to other TM scenes. The results did show some potential for

separating different densities of residential development where the development

occurs in clusters, and this may be a tool that can have practical applicability for

monitoring sprawl. We explored a number of case scenarios accounting for the

effects of sample size and, in the case of low density residential areas, sampling

variability expressed through selection of entire parcels rather than representative

parcel centroids. Results suggest increased sample size and greater spatial

representation do not necessarily improve accuracy, particularly if sampling does

not represent the distinctive between-class variability of land use types.

A number of considerations on the practical utility of training datasets and

inherent limitations in the distinction between land cover and land use can be made.

Disaggregation and ‘speckling’ of land use classes shown in figures 1 and 2 resulted

primarily from the presence of impervious surfaces (e.g. concrete, pavement,

rooftops) in residential areas, and the resulting confusion of these with more

intensive land uses (high density residential and commercial/industrial areas).

Conversely, low density residential areas often consisted of a mixture of land cover

types that occurred in various densities and types sufficiently to introduce mapping

errors with other vegetation classes (e.g. trees and grass). Future work will focus on

the potential for fusion of impervious surface maps with vegetation cover type

classifications derived from TM imagery, and the development of generalized

decision rules that can be applied to TM spectral reflectance values in other study

areas and over even larger areas.
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