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Time series analysis of a climate-driven model of malaria transmis-
sion shows limited evidence for an increase in suitability during the
last century across Africa. Outside areas where climate was always
or never suitable, <17% of the continent showed significant trends
in malaria transmission. Of these areas, 5.7% showed positive
deterministic trends, 6.1% had negative deterministic trends, and
5.1% exhibited stochastic trends. In areas with positive trends,
precipitation, rather than temperature, was the primary forcing
variable. This analysis highlights the need to examine the relation-
ship between climate and malaria more closely and to fully con-
sider nonclimatic factors as drivers of increased malaria transmis-
sion across the continent.

The influence of climate change on the transmission of
Plasmodium falciparum malaria continues to be a subject of

considerable debate. Temperature influences anopheline mos-
quito feeding intervals, population density, and longevity (1–4),
as well as the reproductive potential of the Plasmodium parasite
(1–3, 5). Malaria transmission, however, is a complex interaction
of many factors, including not only vector and parasite densities
and behavior, but also land-use change (6), public health control
measures (7–9), human migration (10–11), and drug resistance
(12–15). More suitable climate conditions may facilitate malaria
transmission, but evidence for increased incidence has not been
clearly linked to climate (14, 16, 17), nor have predictions for the
spread of malaria under future climate change scenarios pro-
duced the range changes that some have conjectured (18).

Here we examine trends in a climate-driven biological model
(19) of malaria transmission for the entire African continent
between 1911 and 1995. We specifically address the role of
climate change in the African malaria resurgence (12) by using
a spatially and temporally extensive gridded climate data-set
(ref. 20; Appendix: Methods and Data) to identify locations where
the malaria transmission climate suitability index (MTCSI;
Appendix: Methods and Data) has changed significantly. In those
areas of change, we examine more closely the underlying climate
forcing of transmission suitability.

Recent investigations of the influence of climate on malaria
transmission in Africa have reached different conclusions. For
example, in the East African highlands several current studies
(16, 21, 22) found no significant climate trends, whereas others
associated the proportion of total admissions caused by malaria
at a site with regional temperature anomalies (23) and claim to
have shown evidence of regional warming (24). Disagreement
remains (24, 25) over the appropriate use of coarse-resolution
climate data in drawing inferences at the facility level for which
malaria incidence data are available. Further, it has been sug-
gested that even statistically insignificant changes in climate
might result in significant changes in malaria transmission po-
tential (24). Concerns have also been raised over the effect of
seasonal noise on long-term trend analyses (25). These analyses
address these issues. First, scaling concerns are eliminated by
performing a comprehensive continental analysis at the original
0.5° latitude and longitude resolution of the climate data.
Second, overlooking potentially significant changes in transmis-

sion is avoided by examining the MTCSI as opposed to analyzing
the climate data directly. Last, there are no issues of seasonal
variability confounding the results because the MTCSI is calcu-
lated on an annual basis.

Methods and Data
We used monthly surfaces of total rainfall R, mean air temperature
T, and mean diurnal temperature range DTR collected from a
Climate Research Unit (CRU) time series (TS) data-set (CRU TS
1.0, www.cru.uea.ac.uk) (ref. 20; Appendix: Methods and Data) to
drive the MTCSI model (ref. 19; Appendix: Methods and Data). The
model transforms temperature and rainfall into an index of trans-
mission potential between zero (unsuitable) and one (suitable)
based on biological constraints of climate on malaria parasite
and mosquito vector development, with an optimal temperature of
22°C and optimal monthly rainfall of 80 mm.

The MTCSIt for t � 1911–1995 was calculated for each of the
10,246 half-degree grid cells covering Africa. Excluding areas
that were never suitable (maximum MTCSIt � 0.1) or perenni-
ally suitable (minimum MTCSIt � 0.9) for transmission reduced
further analyses to 45% of the continent (4,603 of 10,246 grid
cells) for which trends in MTCSI were examined. Autoregressive
models were fitted with ordinary least-squares regression to each
TS. The presence of trends was assessed with augmented Dick-
ey–Fuller (refs. 26 and 27; Appendix: Methods and Data) tests,
and each series was classified according to behavior (stationary
or nonstationary) and the statistical significance of the trend
(zero or nonzero). Grid cells classified as either ‘‘stationary with
trend’’ or ‘‘random walk with drift’’ contained significant deter-
ministic and stochastic trends in climatic suitability, respectively,
whereas those classified as ‘‘stationary with no trend’’ and
‘‘random walk with no drift’’ had no significant trend (Appendix:
Methods and Data).

Results
Of the 4,603 grid cells having potentially variable climatic
suitability, 83.2% exhibited no significant change in MTCSI, with
78.8% classified as stationary with no trend and 4.4% classified
as random walk with no drift. Significant deterministic trends
were found in 11.8% of these grid cells; the deterministic trends
were nearly equally split between positive (5.7%) and negative
(6.1%). The remaining 5.1% exhibited significant stochastic
trends. The spatial distribution of the TS classifications (Fig. 1A)
showed little pattern in the cells having significant trends with
the few exceptions discussed below.

The value of the deterministic trend (Fig. 1B) ranged from
strongly positive to strongly negative, with less than half (261 of
542 cells) revealing an increase in transmission potential. Areas
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with positive trends were distributed primarily in the east and
southeast of Africa, including a large portion of southern
Mozambique that was strongly positive. Areas with negative
trends were clustered and tended to be strongly negative, with
the majority located in the Sahel, the southeastern Ethiopian
highlands, and in southern Ivory Coast and Ghana. Stochastic
trends, further detailed in Fig. 1C, occurred primarily in the
southern Congo basin, northwestern Tanzania, and Madagascar.

To determine the underlying climate forcings on MTCSI in
these specific areas with pronounced trends (Fig. 1D), we further
examined the mean annual MTCSI in relation to mean air
temperature T and rainfall R during the month most limiting to
transmission (Fig. 2). In southern Mozambique (Fig. 2 A), trans-
mission was limited primarily by rainfall. Air temperature, which

fluctuated around the 22°C optimum, was the limiting factor in
just 14 of the 85 years, mostly before 1940. Precipitation was
usually lower than the 80-mm optimum. Rainfall levels were
stable from 1945 to 1965 but variable in the earlier and later time
periods. The positive MTCSI trend was thus forced by the
prevalence of wet, warm years since the mid-1960s.

In the southeastern Ethiopian highlands, MTCSI was always
forced by rainfall (Fig. 2B). Mean monthly precipitation was
persistently lower than the optimum, with a consistent decline
over the time period, resulting in reduced malaria suitability in
the region. In contrast, mean MTCSI, temperature, and precip-
itation for southern Ivory Coast and Ghana (Fig. 2C) suggest
transmission in this area was primarily temperature-limited (68
of the 85 years). There was, however, a shift toward precipitation

Fig. 1. Spatial distribution of malaria transmission potential in Africa, 1911–1995. (A) Classification of time series. Cells classified as ‘‘stable or no transmission’’
had either minimum MTCSI of �0.9 (stable transmission) or maximum MTCSI of �0.1 (no transmission). Cells classified as stationary with trend or random walk
with drift contained deterministic and stochastic trends in MTCSI, respectively. Cells classified as stationary with no trend or random walk with no drift contained
no statistically significant trends in MTCSI. (B) Magnitude of deterministic trends. Strongly negative regions correspond to a deterministic trend � � �0.002;
negative regions correspond to �0.002 � � � �0.001; near zero regions correspond to �0.001 � � � 0.001, positive regions correspond to 0.001 � � � 0.002;
and strongly positive regions correspond to � � 0.002. (C) Magnitude of stochastic trends. Near zero regions correspond to a stochastic trend � � 0.19; low regions
correspond to 0.19 � � � 0.34; moderate regions correspond to 0.34 � � � 0.50; and high regions correspond to � � 0.5. (D) Six regions with significant
deterministic or stochastic trends. These are the regions mapped in Fig. 2.
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limitation in later years. From 1911 to 1955 there were just 6
rainfall-limited years, but after 1955 there were 11, with 4 of
these occurring from 1990 to 1995.

The TS for northwestern Tanzania (Fig. 2D) shows that
temperature and rainfall f luctuated around the optimal values,
with more temperature-limited, wetter years from 1930 to 1950
and more rainfall-limited, warmer years between 1910 and 1930
and 1950 and 1995. The MTSCI showed a high and increasing
interannual variability indicative of a stochastic trend. This
region has unstable malaria transmission dominated by variabil-
ity in the timing and amount of rainfall (28).

The southwestern Congo basin TS (Fig. 2E) showed marked
fluctuation in MTCSI in the middle of the time period (1930–
1975) but little variation in the earlier (1910–1930) or later
(1975–1995) years. This same variability occurred with rainfall,
whereas the temperature increased steadily over the time period.
The years limited by temperature occurred mostly in the earlier
and later periods, when rainfall was high and relatively stable. In
contrast, the years with low MTCSI in the middle of the time
period were primarily rainfall-limited. This change in variability
was likely an artifact of the interpolation method used to
generate the climate data (Appendix: Materials and Data), i.e.,

Fig. 2. Annual MTCSI and limiting climate for six regions with significant deterministic or stochastic trend in climatic suitability for southern Mozambique (A),
southeastern Ethiopian Highlands (B), southern Ivory Coast and Ghana (C), northwestern Tanzania (D), southwestern Congo basin (E), and Sahel (F). MTCSI is the
spatial mean over all grid cells in the region. Air temperature and precipitation values are spatial means over all grid cells in the region during the month most
limiting to MTCSI. The limiting month m is that for which ym is minimized during the either 3- or 5-month window over which the MTCSI was calculated (Appendix:
Methods and Data). Solid squares denote the climatic variable (air temperature or precipitation) contributing to ym in the limiting month, i.e., the limiting climatic
factor for MTCSI. Dashed lines indicate the optimal levels for each climatic variable. Absence of dashed lines indicates that the optimal level was not in the range
of the observed climatic values for the region.
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low variability occurred when rainfall measurements were un-
available within 450 km of the region.

In the Sahel (Fig. 2F), MTCSI was clearly limited by rainfall,
with just 3 of the 85 years forced by temperature. The significant
negative trend in MTCSI was a result of decreased precipitation
over the time period, with a concentration of dry years since the
late 1950s.

Discussion
Our analyses suggest malaria transmission suitability has in-
creased because of the climate change in specific locations of
limited extent in Africa. The majority of areas with variable
transmission potential showed no evidence of trends in climatic
suitability. Southern Mozambique was the only region for which
climatic suitability consistently increased, and this was caused by
increases in precipitation rather than temperature. Climate
warming, expressed as a systematic temperature increase over
the 85-year period, does not appear to be responsible for an
increase in malaria suitability over any region in Africa. Areas
where we found evidence that climate was becoming less suitable
for transmission had all experienced decreased rainfall. Areas of
highly variable, episodic climate suitability (the southwestern
Congo basin and northwestern Tanzania) were also driven by
fluctuations in rainfall rather than temperature. These results
suggest research on the links between climate change and the
recent resurgence of malaria across Africa would be best served
through refinements in maps and models of precipitation pat-
terns and through closer examination of the role of nonclimatic
influences, such as the rise in drug resistance.

Appendix: Methods and Data
CRU TS 1.0 Data. The CRU TS 1.0 data-set (20) is unique for its
long-term (1901–1995) availability and complete global coverage
and has been used to study trends in African climate (29). This
gridded data-set was developed by interpolating observations
taken at meteorological stations. The CRU climate variables
used in this study were mean monthly diurnal air temperature T,
mean monthly rainfall total R, and mean monthly diurnal
temperature range DTR. We estimated annual winter minimum
temperature, Tmin, as min(Tm � 0.5DTRm), where m ranges over
all months in the year. Because of the sparseness of observational
data before 1911, we chose to exclude the first 10 years of data.
Although station observations of diurnal air temperature were
well distributed for most nondesert areas after 1911, measure-
ments of monthly rainfall remained sparse in the Congo basin
over much of the time period.

Additionally, diurnal temperature range records were sparse
before 1941 for the entire continent and before 1961 for all but
extreme southern Africa. For time periods where no meteoro-
logical station data existed within a specified distance (450 km
for rainfall), the grid cell value is set to the long-term mean from
the TS. Therefore, the rainfall TS in the Congo basin shows no
variability for the time periods where observations within 450 km
were not available. The lack of diurnal temperature range data
is less problematic as we would expect the Tmin over a half-degree
grid cell to have little affect on limiting malaria transmission for
most of the African continent.

MTCSI Model. The MTCSI is defined by a series of curves y �
cos2{[(x � U)�(S � U)]�(��2)}, where x is a climate parameter,
U is the value of x when conditions are unsuitable, and S is the
value of x when conditions are suitable. When S � U, the
suitability (1 � y) increases with x; when S � U, the suitability
y decreases as x increases. The model defines monthly increasing
(S � 22°C, U � 18°C) and decreasing (S � 22°C, U � 32°C)

curves for T, a monthly increasing (S � 80 mm, U � 0 mm) curve
for R, and a single increasing (S � 6°C, U � 4°C) curve for annual
minimum temperature. For each month m � 1, 2, . . ., 12, we
calculated the suitabilities yTm

and yRm
resulting from tempera-

ture and rainfall constraints, respectively. Monthly suitability ym
was then computed as ym � min(yTm

, yRm
). For each year, the

suitability yTmin
because of annual minimum temperature was

estimated by using Tmin � min(Tm � 0.5DTRm). The suitability
index for year t is defined as MTCSIt � min(ymax, yTmin

), where
ymax � max(ym) persisting for 3 months poleward of 8° north
latitude and 5 months elsewhere (19).

Augmented Dickey–Fuller Test. Each TS yt was initially fit by
ordinary least-squares to a pth-order autoregressive model �yt �
� � �t � �yt�1 � �i�1

p �i�yt�i � �t, where �yn represents the
differenced series at a lag of n years; �, �, �, and the �i are
constants; yt�1 is the series lagged 1 year; and the �t are random
shocks. Lag order was increased stepwise from p � 0 to p � 4;
p for the accepted model was that which maximized the adjusted
r2 statistic for the regression. The standard errors SE(�), SE(�),
and SE(�) were estimated for parameters �, �, �. The residuals
�t were tested for autocorrelation by using the Q statistic

Q 	 n�n 
 2	 �
i�n�1

n�P ��1
i � �

k�1

P

acf k
2� ,

where acfk is the error autocorrelation function at lag k and P
represents the maximum number of lags to consider (30). We
used P � 24 for each fitted model, based on recommendations
of P � 20 lags (31). Autocorrelation was sufficiently repre-
sented by the inclusion of four or fewer lags; for the 4,603 grid
cells analyzed, only 115 had a Q statistic less than the 5%
critical value, and these cells did not exhibit any obvious spatial
pattern.

Each series was examined to determine its tendency toward
being stationary by using the augmented Dickey–Fuller (26, 27)
test statistic �t � ��SE(�) with null model (� � 1, � � 0) and
alternative (� 
 1). If �t exceeded its order-adjusted 5% critical
value (32) then the series was stationary, i.e., the effect of a
random shock �i diminished over time and the series tended to
revert to its mean value, � � �t. In this case we tested for a
deterministic trend by comparing the test statistic �� � ��SE(�)
to the 5% critical value for the student’s t distribution. If ��

exceeded the critical value, the series was classified as stationary
with trend ; otherwise the series was classified as stationary with
no trend. For a stationary with trend series, the expected change
in MTCSI over t years is �t.

If the null model (� � 1, � � 0) could not be rejected, then
the model was refit by ordinary least-squares but with the linear
trend term �t omitted. The test statistic in this case was �� �
��SE(�), with null model (� � 0, � � 0, � � 1) and alternative
(� 
 0, � � 0, � 
 1). If �� exceeded the 5% critical value (33),
then the series was classified as a random walk with drift;
otherwise the series was classified as a random walk with no drift.
For a random walk with drift �, the expected value of the time
series at time t is �t.
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