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Grey Crowned-cranes occur throughout the mixed wetland-grassland habitats of Eastern and Southern 
Africa. Due primarily to loss of habitat, however, the species is in swift decline over much of its historic 
range. We present a prediction of habitat suitability throughout Uganda using a Maxent modeling 
approach, combining presence-only field data collected over the last few decades (1970 - 2006) with 
remote sensing and climate derived variables. We ran six feature type models, with the Auto feature 
type model having the best fit to the data (AUC = 0.912). Our results provide detailed information 
regarding the characteristics of habitats used and highlight specific areas of high habitat suitability for 
the species. While wetlands were certainly important in the prediction (9.2% contribution), other 
variables (namely temperature seasonality) were more important within the model (19.5%). Areas of 
high habitat suitability (defined as > 0.6 probability of presence) accounted for only a small amount of 
the total area throughout the country (5.8 - 6.9%), and were mainly found in the Southwestern corner of 
the country and along the Albert Nile River. These data provide a statistical basis for extrapolating into 
areas that have not been surveyed and provide valuable information for the future conservation of the 
species. 
 
Key words: Balearica regulorum gibbericeps, East Africa, Grey Crowned-crane, habitat suitability, maxent, 
modeling, Uganda. 

 
 
INTRODUCTION 
 
Grey Crowned-cranes (Balearica regulorum) belong to 
the family Gruidae and are found throughout the mixed 
wetland-grassland habitats of Eastern and Southern 
Africa (Walkinshaw, 1964; Meine and Archibald, 1996). 
They are non-migratory, yet make local and seasonal 
movements (Pomeroy, 1980, 1987) and are most 
abundant in Uganda, Kenya and Tanzania (Meine and 
Archibald, 1996). Their conservation status is currently 
listed as vulnerable with an estimated population of 
approximately 47,000 – 59,000 animals (Bird Life Interna-
tional, 2009). However, due primarily to loss of habitat 
(Meine and Archibald, 1996; Olupot et al., in press), 
populations are in swift decline (Beilfuss et al., 2007).   

In Uganda, home of the subspecies Balearica regulo- 
rum gibbericeps and where the species is recognized as 
the national bird, current populations may  be  as  low  as 
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13,000 birds - a potential decline of more than 60% of the 
population since 1985 (Beilfuss et al., 2007). Of even 
greater concern is the low breeding success. Muheebwa-
Muhoozi (2001) reported a decline in breeding success of 
0.42 birds fledged per clutch over a 25-year period 
(1974/1975 - 1999/2000). If this trend continues, there 
will be no successful breeding pairs within the country in 
the second half of this century.   

Understanding a species’ fundamental niche 
(Hutchinson, 1957) and the threats to its survival are 
essential aspects for the future conservation of the 
species. Past research (Carswell et al., 2005) provided 
anecdotal information about the habitats where cranes 
are likely to be found and a map of the occurrence 
localities received from the National Biodiversity Data 
Bank at the Makerere University Institute of Environment 
and Natural Resources. Olupot and Plumptre (2006) 
conducted a nationwide study to determine the distribu- 
tion of Grey Crowned-crane breeding sites throughout 
Uganda. This study provided insight into the many 
different   types  of  wetland  habitat  that  cranes  use  as 
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Figure 1. Map of Uganda showing Grey Crowned-crane (B. r. gibbericeps) occurrence data. Data provided by the Makerere 
University Institute of Environment and Natural Resources (Unpublished data) and from records collected by Olupot et al. (2006). 

 
 
 
breeding ground and identified 13 districts throughout 
Uganda with evidence of breeding (Olupot and Plumptre, 
2006). Neither study, however, provided information 
about the habitat quality where cranes were sighted, nor 
do they provide any information related to habitat quality 
in areas that were not surveyed.   

Our goal in this study was to use these data to provide 
a country-wide habitat suitability analysis of Grey 
Crowned-cranes throughout Uganda based on a statis-
tical modeling approach. We utilize the program Maxent 
(Maximum Entropy), which refers to a machine learning 
algorithm used for characterizing probability distributions 
from incomplete information (Phillips et al., 2006).  The 
algorithm has been shown to perform well when 
compared against other modeling techniques (Elith et al., 
2005; Gibson et al., 2007; Pearson et al., 2007; 
Hernandez et al., 2008) and has been used to success-
fully model suitable habitat for various species in other 
research (Phillips et al., 2006; Ward, 2006; Gibson et al., 
2007; Pearson et al., 2007; Hernandez et al., 2008).   

Uganda contains an extensive network of wetlands and 
swamps, among the largest (per unit area) in Africa, 
which has important implications for conservation and 
management since cranes most often use wetland edges 
for nesting (Olupot and Plumptre, 2006). The country is 
also predominantly (38%) covered by cropland (Bartholomé 
and Belward, 2005), which often results in conflict with 
humans since many of these agricultural lands border 

wetlands and are often used as nesting and foraging 
sites (Olupot and Plumptre, 2006). While Uganda is one 
of the most biodiversity-rich countries in Africa (Plumptre 
et al., 2007), it also harbors one of the highest human 
population densities (128 per km2 (2007); USDS, 2008).  
As such, providing accurate information about the extent 
of suitable habitat and the variables that may be 
important for driving crane site selection, are critically 
important for future conservation efforts. 
 
 
MATERIALS AND METHODS 
 
Species occurrence data 
 
Species occurrence consisted of point data collected during a 
nation-wide civilian participatory program by W. Olupot and 
colleagues (Olupot et al., in press) and from records kept by the 
Makerere University Institute of Environment and Natural 
Resources (MUIENR, unpublished data). In total, 456 data points of 
Grey Crowned-crane breeding/foraging sites were collected 
throughout the time period 1970 - 2006 (Figure 1). However, the 
majority of data points (61%) were collected over a 10-year period 
(1980 - 1990) by MUIENR and are based on opportunistic road 
sightings.    
 
 
Environmental variables 
 
To model habitat suitability, twenty-four (24) spatially explicit 
variables  (Table 1)  were  selected  for  their  potential  importance, 
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Table 1.  Twenty-four variables used in analysis.  Letters (a,b,c,d,e,f) listed after the variable names denote the feature type model with which the 
variable was used (Auto features (a), Linear features (b), Linear Quadratic features (c), Linear Quadratic Product features (d), Thresdhold 
features (e), Hinge features (f)) 
 

  Variable Name Description Reference 
  Bio-Clim 1d Annual Mean Temperature Hijmans et al. 2005 
  Bio-Clim 2d Mean Diurnal Range (Mean of Monthly (Max Temp - Min Temp)) Hijmans et al. 2005 
  Bio-Clim 3a,e Isothermality (Mean Diurnal Range/Temperature Annual Range) Hijmans et al. 2005 
  Bio-Clim 4a,b,c,d,e,f Temperature Seasonality (Standard Deviation) Hijmans et al. 2005 
  Bio-Clim 5 Maximum Temperature of Warmest Month Hijmans et al. 2005 
  Bio-Clim 6a,b,c,d,f Minimum Temperature of Coldest Month Hijmans et al. 2005 
  Bio-Clim 7a,b,c,d Temperature Annual Range Hijmans et al. 2005 
  Bio-Clim 8 Mean Temperature of Wettest Quarter Hijmans et al. 2005 
  Bio-Clim 9a,d,e Mean Temperature of Driest Quarter Hijmans et al. 2005 
  Bio-Clim 10 Mean Temperature of Warmest Quarter Hijmans et al. 2005 
  Bio-Clim 11d Mean Temperature of Coldest Quarter Hijmans et al. 2005 
  Bio-Clim 12a,e Annual Precipitation Hijmans et al. 2005 
  Bio-Clim 13a,e,f Precipitation of Wettest Month Hijmans et al. 2005 
  Bio-Clim 14d Precipitation of Driest Month Hijmans et al. 2005 
  Bio-Clim 15a,b,c,d,e,f Precipitation Seasonality (Coefficient of Variation) Hijmans et al. 2005 
  Bio-Clim 16d,f Precipitation of Wettest Quarter Hijmans et al. 2005 
  Bio-Clim 17d Precipitation of Driest Quarter Hijmans et al. 2005 
  Bio-Clim 18a,e,f Precipitation of Warmest Quarter Hijmans et al. 2005 
  Bio-Clim 19a,b,c,d,e,f Precipitation of Coldest Quarter Hijmans et al. 2005 
  Biomass Aboveground Woody Biomass (2000) Baccini et al. 2008 
  Elevationa,b,c,d,e,f Elevation USGS 2004 

  
Landcovera,b,c,d,e,f Landcover (GLC2000) Bartholomé E. and Belward A.S 

2005 

  

Soila,b,d,e,f Soil Makerere University Insitute for 
Environment and Natural 
Resources 

  Wetlanda,b,c,d,e,f Wetlands Uganda Wetlands Inspection 
 
 
 
based on our knowledge and from published sources of what would 
likely have relevance in relation to the species (Walkinshaw, 1964; 
Pomeroy, 1980, 1987; Meine and Archibald, 1996; Olupot et al., in 
press). These variables included both biotic and abiotic variables, 
such as woody biomass, elevation, landcover, soil, wetlands, and a 
series of layers (19) related to temperature and precipitation (e.g., 
Precipitation of Warmest Quarter). These nineteen ‘bioclimatic 
variables’, as they are referred to in the text, were extracted from 
the WorldClim dataset and represent mean conditions for the period 
1950 - 2000 (Hijmans et al., 2005).  

Projections, grid cell size and alignment, and spatial extent were 
manipulated to ensure consistency across all data layers using 
Arc/Info Workstation 9.3 (Environmental Systems Research 
Institute, Redlands, CA, USA). All files were projected to Albers 
Equal Area Conic (WGS84 datum) with a grid cell size of 1-km. 
Bilinear interpolation was used as the resampling method for all 
variables except for landcover and soil (since these data are 
categorical variables). In these two cases, nearest neighbor 
resampling was used.   

The wetlands dataset, however, consisted of numerous small 
polygon segments which therefore could not be directly converted 
to a 1-km grid cell without underestimating the amount of wetlands 
throughout the country. Consequently, this dataset was first 
converted to a 25-m grid cell, with all cells being re-coded to either a 
‘0’ (non-wetland) or a ‘1’ (wetland). These data were then summarized 
within the 1-km  grid,  providing  an  assessment  of  the  percentage  of  

wetland within each cell ranging from 0 to 1600 (0 - 100% wetland).   
 
 
Habitat suitability modeling 
 
Maxent is a general-purpose algorithm for estimating a target 
probability distribution by finding the probability distribution of 
maximum entropy (i.e, closest to uniform) (Phillips et al., 2006). The 
algorithm was chosen for use in this study because it (1) has 
performed well when compared with other novel methods (Elith et 
al., 2006; Gibson et al., 2007; Pearson et al., 2007; Hernandez et 
al., 2008), (2) does not require absence data, and (3) allows for the 
incorporation of categorical information (that is, landcover). All 
analyses were conducted using Maxent version 3.2.1, available at 
http://www.cs.princeton.edu/~schapire/maxent/ (Phillips et al. 2004, 
2006).   

After first splitting the species occurrence data into two separate 
partitions (75% for training, 25% for testing), we ran six (6) Maxent 
models using feature types commonly used for comparison (Phillips 
et al., 2004, Phillips and Dudik, 2008) with the above mentioned 
environmental variables (Table 1) to provide an initial assessment 
of variable contribution. Feature types are algorithm parameters 
that utilize the available set of environmental variables to constrain 
the probability distribution that is being computed. The feature types 
used were Auto features (Auto), Linear features (L), Linear Quadra-
tic features (LQ), Linear Quadratic Product features (LQP), Thres-
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Table 2. Summary statistics for the six Maxent habitat suitability models.  Variable combinations for each 
model provided in Table 1. 
 
 Feature Type Model AUC Suitable Habitat (km2)* and % of country 
 Auto (Auto) 0.912 13,931 (5.8%) 
 Linear (L) 0.861 15,899 (6.6%) 
 Linear Quadratic (LQ) 0.854 16,619 (6.9%) 
 Linear Quadratic Product (LQP) 0.880 14,125 (5.8%) 
 Threshold (T) 0.909 14,540 (6.0%) 
 Hinge (H) 0.886 14,851 (6.1%) 
 *Suitable habitat defined as areas with � 0.6 probability of presence 

 
 
 
hold features (T), and Hinge feature (H). Description for each of the 
feature type models can be found in Phillips et al. (2006) and 
Phillips and Dudik (2004). The Auto feature type allows the set of 
features used to depend on the number of presence records for the 
species being modeled using general empirically-derived rules. In 
all instances, a regularization parameter of 1.0 was used to avoid 
overfitting the test data, the maximum number of iterations was set 
at 500 (or until the convergence threshold fell below 10-5), and a 
jackknife procedure was used to assess variable importance.  

Each of the feature type models was then re-run a second time, 
after selecting only those variables that contributed at least 2% to 
the initial model result (signified in Table 1). This methodology 
reduced the total numbers of variables used in the analysis to a 
maximum of sixteen (dependent on the feature type used), with six 
variables being common to all models.   
 
 
Model evaluation 
 
To assess model performance, we used Receiver Operating 
Characteristic (ROC) curves. For more information on ROC curves, 
see Phillips et al. (2004). The main advantage of ROC analysis is 
that the area under the ROC curve (AUC) provides a single 
measure of model performance, independent of any choice of 
threshold (Phillips et al., 2006). For each run, we calculated the 
AUC, which is the probability that the classifier orders a random 
positive and random negative point correctly (Phillips et al., 2004). 
A perfect classifier therefore has an AUC of 1, although the 
maximum AUC is less than one because of the use of presence-
only data (Wiley et al., 2003; Phillips et al., 2004). Generally, AUC 
values greater than 0.7 are considered to be potentially significant, 
while scores of 0.5 imply a predictive discrimination that is no better 
than random (Elith et al., 2006). 

To provide an assessment between the different feature type 
models, we generated 1000 random points throughout the study 
area and extracted the probability value from each of the six model 
results. The nonparametric Kruskal-Wallis multi-comparison, H, test 
(Kruskal and Wallis, 1952) was then used to examine if the 
extracted values differed and a Behrens-Fisher test was used to 
identify inequalities (Zar, 1999). All statistical analyses were 
conducted using the statistical package ‘R’ (R Development Core 
Team, 2009). 
 
 
RESULTS 
 
Statistics from each of the six Maxent feature type 
models are summarized in Table 2.  AUC values for all 
models are > 0.85, implying a potentially significant 
result. The model results suggest that the best method 

for predicting crane habitat suitability was the Auto (a) 
feature set (AUC = 0.912), although admittedly only 
marginally better than the other models. Visualizations for 
each model are provided in Figure 2, highlighting for the 
most part (with the exception of the low habitat suitability 
area in the Southern section of Uganda in feature type 
models T, H, and Auto), that model outputs are visually 
very similar. The Kruskal-Wallis comparison test, how-
ever, indicates a significant difference between models 
(�2 = 39.9032, p < 0.0001). Further analysis (Behrens-
Fisher test) shows that this inequality lies with the Linear 
(L) and Linear Quadratic (LQ) feature type models (L-
Auto: p < 0.05, LQ-Auto: p < 0.0001, L-LQP: p < 0.05, 
LQ-LQP: p < 0.0001, LQ-H: p < 0.05). After removing 
these two feature types, no significant difference was found 
between models (�2 = 7.6552, p > 0.05).    

Areas of high habitat suitability in each of the models 
(considered to be areas with > 0.6 probability of presence) 
account for only a small portion of the country (5.8 - 6.9% 
depending on model, Table 2), with the Linear (L) and 
Linear Quadratic (LQ) feature type models indicating the 
largest area of suitable habitat. This was an arbitrary 
threshold to estimate the area of ‘good’ habitat and 
provided a means of comparison between models. Six of 
the variables were common to each model and found to 
contribute at least 2% to the model result. These 
variables were: ‘Temperature Seasonality (Bio-Clim 4)’, 
‘Precipitation Seasonality (Bio-Clim 15)’, ‘Precipitation of 
Coldest Quarter (Bio-Clim 19)’, ‘Elevation’, ‘Landcover’, 
and ‘Wetlands’ (Table 1).   
 
 
Best model fit 
 
The Auto feature type model (Figure 3) was selected as 
the best predictive model due to having the highest 
model performance value (Table 2) and its more 
conservative estimate of high habitat suitability (13,931 
km2, 5.8%; Table 2). For this reason, the remainder of the 
results apply only to this feature type model. 

The most important explanatory variable was ‘Tempe-
rature Seasonality (Bio-Clim 4)’, with ‘Precipitation of 
Warmest Quarter (Bio-Clim 18)’ and ‘Precipitation 
Seasonality (Bio-Clim 15)’ collectively contributing 43% to
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Figure 2. Maxent feature type models. The predictions analyzed are: Linear (L); Linear and Quadratic (LQ); 
Linear, Quadratic, and Product (LQP); Threshold (T); Hinge (H); and Auto (Auto).  Model performance value 
(AUC) provided. 

 
 
 
the model output (Table 3). ‘Wetlands’ and ‘Landcover’ 
also proved to be important variables in the prediction, 
but with smaller individual contributions (9.2% and 7.3%, 
respectively). In total, nine variables (including those 
variables mentioned above plus ‘Mean Temperature of 
Driest Quarter (Bio-Clim 9)’, ‘Precipitation of Coldest 
Quarter (Bio-Clim 19)’, ‘Precipitation of Wettest Month 
(Bio-Clim 13)’, and ‘Elevation’ contributed 86% to the 
model output (Table 3). The response curve for 
‘Temperature Seasonality (Bio-Clim 4)’ shows a bi-modal 
distribution, with the highest probability of crane presence 
related to areas having both the highest and lowest 
values of temperature seasonality throughout the country 
(Figure 4). These areas appear in the Southwestern part 
of the country (lowest temperature seasonality) and the 
area just North of Lake Albert/Murchison Falls National 
Park along the Albert Nile (highest temperature seasona-
lity). This variable was evaluated as having the most 

useful information by itself, based on the jackknife test to 
assess variable importance. 

The only other variables with bi-modal distributions 
were ‘Isothermality (Bio-Clim 3)’ and ‘Temperature 
Annual Range (Bio-Clim 7)’, with the highest and lowest 
values overlapping the same geographic areas as 
described above for ‘Temperature Seasonality (Bio-Clim-
4)’. For ‘Isothermality (Bio-Clim 3)’, however, the high and 
low values are opposite to those of ‘Temperature 
Seasonality (Bio-Clim 4)’ (that is, the lowest isothermality 
appears in the Southwestern portion of the country and 
highest being along the Albert Nile).   

The response curves for ‘Precipitation of Warmest 
Quarter (Bio-Clim 18)’ and ‘Precipitation of Coldest Quar-
ter (Bio-Clim 19)’ show that highest predicted suitability 
are in areas of low to medium precipitation (200 – 400 
mm during the warmest quarter, <300-mm during the 
coldest quarter). Medium ‘Precipitation  Seasonality  (Bio- 
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Figure 3. Auto feature type model showing predicted habitat suitability with warmer colors representative of 
higher suitability.  Roads, Lakes, and major cities/capital provided for reference. 

 
 
 
Clim 15”)’ also leads to higher probability of presence. 
Not surprisingly, predicted habitat suitability increases 
with an increase in the amount of wetlands and 
decreases sharply when elevation exceeds 2200-m 
(Figure 4). However, these results are not without exception.  
For instance, the Lake Kyoga area in the center of the 
country has the highest proportion of wetland habitat and 
yet, the habitat suitability of this area is quite low.  

Analysis of the landcover indicates that cranes were most 
often found in “Regularly Flooded Shrub and/or Herbaceous 
Cover” (7), “Artificial Surfaces” (12), “Broadleaved 
Deciduous Closed Canopy Tree Cover” (2) and “Cultivated/ 
Managed Areas” (8).  Response curves for all variables 
can be found in Figure 4. 

DISCUSSION 
 

Our results suggest that the Southwestern portion of 
Uganda contains the highest amount of suitable habitat 
for Grey Crowned-cranes throughout the country. This 
region lies roughly along the equator and thus, as the 
bioclimatic variables illustrate, experiences low 
temperature seasonality with moderate but sustained 
precipitation.  The other region that contains high habitat 
suitability lies just North of Lake Albert along the Albert 
Nile River. This area has a higher mean annual tem-
perature than areas in the Southwest, but receives a 
similar amount of precipitation. It is therefore likely that 
the increased precipitation and close proximity to a  year- 
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Table 3.  Analysis of variable contribution for the Best model fit result (Auto feature type). 
 
  Variable Name Description % Contribution 
  Bio-Clim 4 Temperature Seasonality (Standard Deviation) 19.5 
  Bio-Clim 18 Precipitation of Warmest Quarter 12.4 
  Bio-Clim 15 Precipitation Seasonality (Coefficient of Variation) 10.8 
  Wetland Wetlands 9.2 
  Bio-Clim 9 Mean Temperature of Driest Quarter 7.5 
  Landcover Landcover (GLC2000) 7.3 
  Bio-Clim 19 Precipitation of Coldest Quarter 6.9 
  Bio-Clim 13 Precipitation of Wettest Month 6.6 
  Elevation Elevation 6.1 
  Bio-Clim 3 Isothermality (Mean Diurnal Range/Temperature Annual Range) 3.5 
  Soil Soil 3.3 
  Bio-Clim 12 Annual Precipitation 3.1 
  Bio-Clim 6 Minimum Temperature of Coldest Month 2.9 
  Bio-Clim 7 Temperature Annual Range 0.8 

 
 
 
round water source provides ample food resource 
opportunities even though the temperature is warmer 
than further to the south. 

All other areas in the North have extremely low habitat 
suitability with most areas being mapped as completely 
unsuitable. This area is seemingly too dry, having the 
lowest annual precipitation throughout the country and as 
a result, is covered by mostly open shrub/tree cover (15 - 
40% tree cover; Bartholomé and Belward, 2005). Earlier 
observations from this area (pre-1970), however, suggest 
that Grey Crowned-cranes may have occurred in some of 
these areas. It is unclear if the current absence of cranes 
in this area is a result of changes in climate, or due to 
regional disturbances that may have occurred from the 
civil unrest in the area over the past 20 years.   

Depending on the type and intensity of disturbance, 
disturbances can either have a positive or negative effect on 
cranes.  For example, the burning of seasonally inundated 
wetlands (as commonly occurs in the Northern part of the 
country) may destroy nesting habitat. Wetland cultivation, 
however, may (in some cases) provide crops that offer 
both a food source and shelter from predators for cranes 
(Olupot and Plumptre, 2006).  While the type and intensity 
of disturbance were not specified in this study, they could be 
important variables to consider in future research.  

Three of the models (Auto, H, and T) depict an area along 
the equator and West of Lake Victoria that has very low 
habitat suitability, an unexpected result considering the high 
habitat suitability in neighboring areas. A detailed evaluation 
of the bioclimatic variables indicates that this area has lower 
annual precipitation than neighboring areas (comparable to 
the annual precipitation in the Northeast section of the 
country) and is also characterized by mainly sparse shrub 
cover (Bartholomé and Belward, 2005). As the gradient of 
precipitation changes, so too does the landcover through-
out the area, resulting in higher habitat suitability. 

Based on the landcover, cranes were most likely to be 
found in “regularly flooded shrub and/or herbaceous 

cover”. This was an anticipated result, as this type of 
habitat would likely provide a plentiful food supply year- 
round. The same would hold true with regard to “Cultiva-
ted/managed areas”, although this would be dependent 
on the type of crop being managed. The two landcover 
categories “Broadleaved deciduous closed canopy tree 
cover” and “Artificial surfaces”, however, were unexpect-
ed. We believe these two categories to be results of 
sampling bias as cranes are more likely to be seen near 
settled areas and related to inaccuracies in the landcover 
classification which was completed on a regional scale at 
1-km resolution. Such inaccuracies are common when 
relating presence locations with categorical information. 
We did run our analysis using an alternative landcover 
classification (Africover; Alinovi et al., 2000).  

However, no significant  differences  were  found  betw- 
een the model results.  The landcover types from this 
classification that most explained the crane presence 
locations were (1) “Urban areas”, (2) “Aquatic agricul-
ture”, (3) “Rainfed herbaceous crops”, (4) “Tree and 
shrub savannah”, and (5) “Irrigated and post-flooding 
herbaceous crops”. Again, the category “Urban areas” 
highlights issues associated with the sampling design, 
but may also imply that cranes have grown adapted to a 
human disturbed landscape.   

Particular areas throughout the country are very remote 
with difficult access. This could be the reason that the 
area around Lake Kyoga (center of country) is considered 
to be of low habitat suitability even though it contains 
some of the largest wetland complexes to be found in the 
country. This area is covered by reeds and other asso-
ciated vegetation that make field sampling extremely 
difficult. Other areas throughout the country may have the 
opposite bias, as field sampling may have been facilitated 
by the terrain (ability to see longer distances) and/or by 
degradation of wetland habitat (allowing for increased 
accessibility). We also  recognize  that  our  evaluation  of 
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Figure 4. Response Curves for the Auto feature type model.  Values for landcover (Bartholomé  and Belward, 2005) are: (1) Tree cover, 
broadleaved, evergreen; (2) Tree cover, broadleaved, deciduous, closed; (3) Tree cover, broadleaved, deciduous, open; (4) Mosaic: tree 
cover/other natural vegetation; (5) Shrub cover, closed-open, deciduous; (6) Herbaceous cover, closed-open; (7) Sparse herbaceous or 
sparse shrub cover; (8) Regularly flooded shrub and/or herbaceous cover; (9) Cultivated and managed areas; (10) Mosaic: cropland/tree 
cover/other natural vegetation; (11) Mosaic: cropland/shrub or grass cover; (12) Water bodies; and (13) Artificial surfaces and associated 
areas.  Values for soil (Makerere University Institute of Environment and Natural Resources, unpublished data) are: (1) Clays; (2) Sandy clay; 
(3) Clay loam; (4) Poorly drained soils; (5) Water; (6) Sandy clay loam; (7) Loamy sand; (8) Sandy loam; (9) Loam; (10) Sand; (11) 
Unclassified. 

 
 
 

each model was derived from withheld data. While these 
data are likely to have the same biases as the training 
data, they were deemed the best validation dataset to 
use. Therefore, additional research is necessary to verify 
areas with little to no field sampling and provide a second 
and independent dataset for testing. 

Our results also highlight the interactive effects of 
variables for predicting habitat suitability. For instance, 
while wetlands are certainly vitally important for crane 
nesting and foraging habitat, wetlands alone do not 

provide an accurate picture of habitat suitability (as 
exemplified by the Lake Kyoga area) and models run 
without this parameter were not significantly different than 
when the parameter was included. A traditional des-
cription of suitable crane breeding habitat is shallow, 
flooded grass savannahs with scattered trees. This 
description is consistent with many of the wetlands to the 
east and mid-west of the country. Cranes do not occur in 
papyrus swamps abundantly found in the central and 
southwestern  portions  of  Uganda.  However, our results  



 
 
 
 
show that the Southwestern portion of Uganda contains 
the highest habitat suitability throughout the country. It is 
possible that as papyrus swamps become degraded, they 
become more suitable for cranes and as grass swamps 
with scattered trees become similarly degraded, they 
become less suitable.  

We were encouraged by the similarity of our results 
between models. Although the Linear and Linear Quadratic 
feature type models were shown to be statistically different 
than all other models (and indicated the largest area of 
suitable habitat), the general trend was similar: highest 
habitat suitability was concentrated in the Southern part 
of the country with a small area of suitable habitat in the 
Northwest corner around the Albert Nile. The difference 
between the models can be explained by the fact that the 
Linear and Linear Quadratic feature type models were less 
conservative and over-estimated the total amount of suitable 
habitat throughout the country (at least 1,000 km2 more 
suitable habitat than any of the other models).  

The Maxent output provides quantitative information about 
the suitability of habitat throughout Uganda on a pixel by 
pixel basis, extrapolating into areas that were under-
sampled or not sampled at all on a statistical basis. As such, 
the result is an easy-to-interpret map that can be imported 
into other programs (e.g. ArcGIS) and further analyzed and 
is far better than shaded outline maps of species distri-
butions that are commonly found in standard field guides 
(Phillips et al., 2006). Maxent also provides detailed 
information about the variables along with their impor-
tance in relation to the contribution to the model, which 
may have important implications for the conservation of 
the species. The Auto feature type model was selected 
as the model of choice because it had the highest AUC 
value, although admittedly only marginally better than any 
of the other models.  

It is important to note that while our results illustrate the 
current extent of suitable habitat throughout Uganda, 
some of the variables may not accurately depict current 
conditions (e.g., the bioclimate variables represent mean 
values for the time period 1950 - 2000). And, as swamp 
reclamation is currently ongoing in Uganda, conditions 
related to crane habitat may be rapidly changing. 
Additionally, our model does not capture the ease (or 
difficulty) of sighting cranes in different areas, crane hunting 
intensity, or the levels of harassment which potentially 
influence crane distributions. If reliable datasets of current 
conditions and threats to the species can be identified, these 
data can be incorporated into Maxent to improve results. 
Additionally, if future scenarios related to changing climatic 
conditions and/or land-use practices can be developed, the 
presence localities from this study can be ‘projected’ onto 
these scenarios to provide detailed information about 
changing conditions that may affect Grey Crowned-crane 
populations.     

Lastly, Uganda has 10 national parks that cover a total 
land area of 12,172 km2, protecting a number of different 
habitat types (from montane rainforests to grassland 
savannahs) and species. However, only 1,469 km2 (12%) of 
the total habitat that  we  have  identified  as  highly  suitable  
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(13,931 km2) for cranes are found within these protected 
area limits; the majority of which (784 km2, 54%) are located 
within the boundaries of Queen Elizabeth National Park. 
These results highlight the inadequacies of current 
protected areas in regard to formal protection for Grey 
Crowned-cranes, but also provide information to guide 
future management plans if these populations are to 
remain viable in a dynamically changing landscape.  
 
 
Conclusion 
 
This study provides the first detailed map of Grey Cro- 
wned-crane habitat suitability throughout Uganda. The 
Maxent modeled result provides an easy-to-interpret 
output that can be incorporated into conservation 
management plans and could similarly be carried out in 
other countries throughout the region should datasets of 
presence be available. In particular, we draw attention to 
some of the main variables that may contribute to crane 
site selection and highlight the fact that Uganda plays a 
crucial role in the long-term survival of crane populations 
throughout east Africa. While future research could 
improve the models in terms of calibration and validation, 
these data provide important information towards the 
future conservation of the species.  
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