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Introduction

The impacts of climate change on the frequency and severity of physical hazards are 

putting many communities at risk. As the threat of climate change grows, so too does 

the need for accessible information, tools, and expertise to support climate-resilient 

decision making across multiple scales, from communities to countries. Woodwell 

Climate Research Center believes there is a need to localize and customize climate risk 

assessments. This information is critical for local government leaders as they make 

planning decisions, but it is not available to all communities. Woodwell believes that this 

science should be freely and widely available. To address this gap, Woodwell works with 

communities and countries across the world, including Ethiopia, to provide community 

climate risk assessments, free of charge.

¹ World Bank, 2024

² FAO, 2024

Ethiopia, with its rich cultural heritage and about 126.5 million people (2023¹), faces 

growing climate challenges that also impact its economic priorities and natural resources. 

Located on the horn of Africa, Ethiopia boasts a diverse range of climates, from tropical 

forest in the southwest to desert in the north. Rain-fed agriculture forms the livelihoods of 

many of Ethiopia’s communities—agriculture accounted for nearly 35% of Ethiopia’s GDP 

in 2020.² Ethiopia experiences the e�ects of increased climate variability through extreme 

hazards including droughts, floods, and landslides across di�erent parts of the country.

Ethiopia has established a strong policy landscape for climate action through several 

strategic initiatives. The national government has demonstrated their commitment 

to addressing Ethiopia’s climate future by embracing the Sendai Framework for 

Disaster Risk Reduction and incorporating resilience principles into its first Nationally 

Determined Contribution (NDC) to the UNFCCC submitted in 2017 and revised in 2022. 

In addition, Ethiopia has outlined its commitment to sustainable development through 

key policy frameworks, including the Ten-Year Development Plan (2021–2030), the 

Long-Term Low Carbon Emission Development Strategy (LT-LEDS 2020–2050), the 

Climate Resilient Green Economy Strategy (CRGE), and the National Adaptation Plan 

(NAP), aimed at mitigating risks associated with climate change and environmental 

degradation. Woodwell’s quantitative risk assessment of extreme precipitation, flooding, 

drought, and streamflow patterns builds upon Ethiopia’s deep knowledge systems and 

aims to complement existing national frameworks. This report intends to provide local 

data insights to support decision-makers and communities to take evidence-informed 

approaches for resilience.  

https://www.worldbank.org/en/country/ethiopia/overview
https://www.fao.org/in-action/scala/countries/ethiopia/en
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The climate of Ethiopia is heavily influenced by its imposing topography. The country 

can be roughly divided into the highlands that make up most of the western half of 

Ethiopia and the lowlands which consist of southeast and northeast Ethiopia. These two 

zones di�er significantly in the distribution, intensity, and seasonality of rainfall. This 

variation a�ects water availability, agriculture, and climate resilience across the country. 

The highlands generally see around 1,500 mm of rainfall per year (Figure 1) which falls 

mostly during the Kirempt season (June–September). The lowlands receive considerably 

less rainfall, about 300 mm annually, which occurs largely during the Belg rainy season 

(February–May).

³ CSA, 2016a; CSA, 2016b

⁴ Chandrasekharan et al., 

2021

Figure 1   The spatial distribution of rainfall for the Kirempt (Jun–Sep) and Belg (Feb–May) rainfall 
seasons as a proportion of annual rainfall using MSWEP data (see Methodology for details on 
data source). 

Due to this sharp gradient in annual rainfall, the type of agriculture to support livelihoods 

di�ers between the highlands and the lowlands. Crop-based agriculture dominates the 

highlands (Figure 2), while as one moves southeast and northeast towards the lowlands, 

pastoral communities become more prevalent. Approximately 94% of Ethiopia’s crop 

production occurs in the Meher season (September–February) which is largely a product 

of the Kirempt rainy season.³ A failure of the summer rains would be devastating for 

the Ethiopian people, especially since more than 85% of the labor force is engaged in 

the agricultural sector, with only 5% of crop production is irrigated, making the sector 

highly dependent on rainfall.⁴ Internal climate variability can lead to large swings in 

annual rainfall from year to year leading to a drought prone environment. Additionally, 

bursts of extreme precipitation that cause flooding can occur in drought years resulting in 

concurrent disaster events.

https://ess.gov.et/download/agricultural-sample-survey-area-and-production-meher-season-2016/
https://ess.gov.et/download/agricultural-sample-survey-area-and-production-belg-season-2016/
https://doi.org/10.5337/2021.206
https://doi.org/10.5337/2021.206
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Results summary

We assess impacts across three time periods in this analysis: a historical period (labeled 

2000), a near future time period (labeled 2050) and a late future time period (labeled 

2070). These correspond to warming levels of 1.1°C, 2.6°C, and 3.6°C, respectively,  

relative to the preindustrial period (1850–1900). Future results are based on the fossil-

fuel intensive SSP5-8.5 scenario; see Methodology for further information.

We show that climate change will reshape weather patterns across Ethiopia, posing 

significant challenges to water availability, agriculture, and livelihoods. The projected 

increased frequency and intensity of extreme weather events, particularly droughts 

and floods, will impact both highland and lowland communities. Extreme drought 

risk will increase moderately (1x–1.5x historical probability) in Somali by 2050 and 

significantly (1.5x–2x historical probability) in northwestern Ethiopia by 2070. Mean 

annual streamflow, low flows, and high flows in the north central portion of the country 

are projected to increase in volume. Extreme precipitation will also intensify with the 

historical 100-year rainfall amount increasing 20%–30% by 2050 and 30%–40% by 2070 

for the majority of Ethiopia. Flood risk is generally concentrated within the central 

Ri�t Valley of the country and in Somali where communities have developed within the 

floodplain. We estimate that the 100-year flood will impact more than 840,000 structures 

and cause greater than $1.2 billion 2020 USD ($1.47 billion in 2025 USD), or more than 

47 billion 2020 Birr (192 billion in 2025 Birr)⁵, in building damages.

⁵ Exchange rate was 

accessed on March 11, 

2025. The 2020 exchange 

rate was taken from Wise.

Figure 2   Source: Government of Ethiopia, USAID. 

https://www.google.com/finance/quote/USD-ETB?sa=X&ved=2ahUKEwjv5ti-jIOMAxXmkYkEHZM0BekQmY0JegQIKBAn
https://wise.com/us/currency-converter/usd-to-etb-rate/history/31-12-2020
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⁶ Crisis (Phase 3) is defined 

as “high or above-usual 

acute malnutrition” or 

“marginally able to meet 

minimum food needs 

but only by depleting 

essential livelihood assets 

or through crisis-coping 

strategies.” IPC.

⁷ Sadler and Catley, 2009

⁸ Hirata et al., 2017

⁹ AHDB, 2018

¹⁰CSA, 2017

¹¹ The 2021–2023 drought, 

considered worse than 

the 2015 drought, was not 

evaluated here because 

agricultural surveys for 

2022 and 2023 have 

not been released by 

the Ethiopian Central 

Statistical Agency.

¹² CSA, 2014; CSA, 2015

¹³ CSA, 2016; CSA, 2018 

¹⁴Ethiopian Ministry of 

Agriculture, 2023 

¹⁵ CSA, 2014; CSA, 2015 

¹⁶CSA, 2022; Global Yield 

Gap Atlas 

With the inclusion of additional local data, the climate change projections and risk 

metrics within this report can be generated at high resolutions for additional parts of 

the country, and with greater accuracy, to provide even more actionable information 

for policymakers. Here we present our findings on drought, streamflow, extreme 

precipitation, and flooding to help Ethiopia in its plans to create a more resilient future 

for all residents.

Drought 

Between 2001 and 2021, improvements in crop yields have allowed cereal production in 

Ethiopia to outpace population growth. This has led to stable food security for most of the 

population in the highlands where cropping agriculture is prevalent (Figure 3). Between 

July 2009 and September 2024, much of the Ethiopian highlands spent less than 10% of 

the time (<18 months) in a food insecurity crisis.⁶ The lowlands, on the other hand, have 

experienced significantly more food insecurity. The northern half of Afar, eastern Oromia, 

and most of Somali have seen crisis-level, or worse, food insecurity 50%–60% (8 years–9.5 

years) or more of the time between July 2009 and September 2024. Eastern portions 

of Amhara as well as South Ethiopia have also experienced crisis-level food insecurity 

between 20% (~3 years) and 40% (~6.5 years) of the 18 years analyzed. At the same time, 

recurrent food insecurity cannot be attributed solely to drought conditions, as multiple 

factors o�ten interact. Economic, social, and political factors also play critical roles. 

Nevertheless, the significant impact of drought remains undeniable. For example, the 

2020–2022 conflict in northern Ethiopia demonstrates how instability further exacerbates 

food insecurity. While a meteorological drought is a moment in time, the communities 

a�ected by drought continue to feel the impacts as infrastructure, markets, and social 

systems work to rebuild. 

Pastoral areas are heavily reliant on livestock for income and daily food intake. Milk is a 

crucial form of calories and protein with young children receiving two-thirds of needed 

energy and all required protein from milk in Somali.⁷ In Afar, milk is the main source 

of protein, and livestock is o�ten used as a trade commodity in exchange for cereals.⁸ 

Yet, milk production in Ethiopia, at 276 liters per cow, lags behind global annual yields 

(the worldwide average is 2,500 liters per cow⁹). In Somali, milk production lags even 

more, with a cow producing 156 liters of milk per year.¹⁰ The 2015 drought that heavily 

impacted northeastern Ethiopia illustrated just how much food security is tied to the 

success of expected rains.¹¹ In Tigray, cow milk production fell 27% in 2015 compared 

to the previous year. Similarly, Somali saw a 26% reduction in cow milk production over 

the same period.¹² The size of cattle herds in Afar decreased by 20% between 2014 and 

2016, and cattle numbers did not recover to pre-drought levels until 2018.¹³ However, 

the Ethiopian government plans to quadruple milk production from 2022 levels by 2031 

through improved feeds, strengthening milk safety and transport systems, and enhancing 

herd health and husbandry practices.¹⁴ 

The 2015 drought also brought diminished crop yields across northeastern Ethiopia. 

Between the 2014 and 2015 Meher seasons, grain crop production fell 66% in Afar, 10% 

in Tigray, and 25% in Somali.¹⁵ Eastern portions of Oromia and Amhara also faced crop 

losses, although not as pronounced as those in the more arid parts of the country. While 

there remains a significant gap between current and potential cereal yields, the Ethiopian 

government is actively and aggressively working to bridge that divide on several fronts 

such as the CRGE Strategy. As an example, current national average maize yields stand at 

4.6 tons per hectare while potential yield has been estimated to be 15 tons per hectare.¹⁶ 

Crop yields are expected to continue to outpace population growth as has occurred for 

https://www.ipcinfo.org/famine-facts/
http://hdl.handle.net/10427/71180
https://api.semanticscholar.org/CorpusID:134785773
https://ahdb.org.uk/news/uk-milk-productivity-the-global-context#:~:text=Cow%20numbers%20vary%20greatly%20between,to%20other%20top%20producing%20nations.
https://ess.gov.et/download/agricultural-sample-survey-livestock-poultry-and-beehives-2017/
https://ess.gov.et/download/livestock-and-livestock-characteristicsprivate-peasant-holdings-2014-15-2007-e-c/
https://ess.gov.et/download/agricultural-sample-survey-livestock-poultry-and-beehives-2015/
https://ess.gov.et/download/agricultural-sample-survey-livestock-poultry-and-beehives-2016/
https://ess.gov.et/download/livestock-and-livestock-characteristicsprivate-peasant-holdings-2018-19-2011-e-c-1/
https://hdl.handle.net/10568/135703
https://hdl.handle.net/10568/135703
https://ess.gov.et/download/agricultural-sample-survey-product-utilization-meher-season-2015/
https://ess.gov.et/download/agricultural-sample-survey-area-and-production-meher-season-2016/
https://ess.gov.et/download/the-2014-ec-meher-season-report-on-area-and-production-of-major-crops_final-1/
https://www.yieldgap.org/gygaviewer/index.html
https://www.yieldgap.org/gygaviewer/index.html
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the past two decades (Figure 4). However, even with this historical trend, it would be 

incorrect to assume that food security is guaranteed, as other factors must be considered 

such as food distribution challenges, post-harvest losses, market access constraints, and 

regional disparities in production.

Figure 3   Source: FEWSNet, Nov 2020-Nov 2022 data is excluded. As of this writing, data from 
FEWSNet is not available, so any update beyond September 2024 is not possible.

Figure 4   Graph of Meher season total production (tons) per capita for five main cereals (te�, barley, 
wheat, maize, and sorghum) in Ethiopia (2001-2021). Source: Population data from UN Data Portal 
and grain production data from Bezabih et al., 2023.

https://population.un.org/dataportal/home?df=3998093f-f2cc-49e3-b7b6-7d242adfc739
https://doi.org/10.1016/j.jssas.2023.07.001#f0025
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In our analysis of future drought risk, we define an extreme drought for a location 

(a gridcell of ~25 km) as the 10th percentile of the Standardized Precipitation-

Evapotranspiration Index (SPEI) of the previous 12 months for the 1991–2010 time 

period.¹⁷ This would be equivalent to an annual drought with a 10-year return period. 

Compared to the year 2000, the vast majority of pastoral lands in Ethiopia will be subject 

to increased risk of extreme drought by 2050 (Figure 5). Some lowland areas will see 

the probability of extreme drought increase by 50% while much of the highlands are 

projected to experience 25% to 50% reductions in extreme drought probability. By 2070, 

drought risk outcomes will become inverted compared to 2050. Northwest Ethiopia, 

comprising Tigray, Amhara, and Benishangul Gumz, will see the probability of extreme 

drought increase between 50% and 100% compared to the year 2000. That is, the 10-year 

drought will become a 5-year drought for some communities including those surrounding 

Lake Bakili in Afar and the Mareb River in Tigray (e.g., the communities of Golonco 

and Kidus Mikael) as well as northeast of Lake Tana in Amhara (e.g., the communities 

of Guhala and Dudubba). While it can be useful to compare return periods of historical 

droughts (i.e., 2015 and 2021–2023) with projected changes in drought probability, we 

refrain from doing so here because of the spatial and temporal di�erences in drought 

events and the metrics used to measure those events. These disparities could lead to 

confusing and conflicting results as attribution studies have used di�erent drought 

metrics and previous droughts have occurred in di�erent parts of the country for di�erent 

lengths of time. For example, the 2015 drought mostly impacted the northeastern 

quadrant of Ethiopia and was attributed a return period between 60 and several hundred 

years using daily precipitation rates.¹⁸ Conversely, Somali bore the brunt of the 2021–2023 

drought and was estimated to be a 26-year event using SPEI, but was described as the 

worst drought in 40 years.¹⁹ 

¹⁷ The 10th percentile 

of SPEI is used to 

determine dry periods 

because of its prevalent 

use as a measure of an 

extreme event (Wen et 

al., 2024). SPEI takes 

into account potential 

evapotranspiration which 

represents the amount 

of moisture that the 

surface could lose due to 

heat and radiation, and 

precipitation to estimate 

the water balance (see 

the Methodology section

 for a detailed description).

Figure 5   Change in the probability of historical extreme drought between 2000 and 2050 (left) and 
2000 and 2070 (right) under SSP5-8.5. Green and blue areas represent decreasing probability while 
yellow and red areas indicate increasing probability.

Future drought probability patterns are in part attributable to changes in 

evapotranspiration (ET). ET is the flux of water from the earth’s surface (including land, 

water, and vegetation) to the atmosphere and is one of the primary terms subtracted in a 

¹⁸Philip et al., 2018 

¹⁹Kimutai et al., 2025;  

UN News, 2022

²⁰Burek et al., 2020

https://doi.org/10.1038/s41597-024-03883-z
https://doi.org/10.1038/s41597-024-03883-z
https://doi.org/10.1175/JCLI-D-17-0274.1
https://doi.org/10.1016/j.wace.2025.100745
https://news.un.org/en/story/2022/04/1116872
https://doi.org/10.5194/gmd-13-3267-2020
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Figure 6   Current 2000 period (1981-2019) 
mean of annual total evapotranspiration as 
simulated by CWatM. 

Relative to the current period, changes in annual ET in 2050 are characterized by a mix 

of moderate increases and decreases across the modeling domain (Figure 7). The lack 

of substantial change in ET, combined with projected increases in annual precipitation 

(Figure 8) contribute to the decrease in drought risk across the modeling domain in 2050. 

In contrast, almost the entire modeling domain is projected to experience increases in 

annual ET by 2070, with the largest increases (15% or more) projected for the eastern 

edge. Substantial increases in annual ET contribute to the increase in drought probability 

across the modeling domain under the later time period.

water budget calculation. Annual total ET, averaged across years, was simulated using the 

hydrologic model CWatM²⁰ for a subregion of north central Ethiopia (herea�ter referred to 

as the modeling domain). Further details regarding the model and methods are available 

in the Streamflow and Methodology sections. During the current period (1981–2019; 

2000), annual ET has been moderate (0.4 to 0.8 m/yr) in the southern portion of Tigray, 

northern and eastern Amhara, and eastern Oromia (Figure 6). Annual ET in western 

Oromia and eastern Benishangul Gumz has been high (0.8 to 1.4 m/yr) relative to global 

annual ET values.
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Figure 7   Percent change in period-averaged annual total evapotranspiration as simulated by CWatM 
between 2000 (1981-2019) and 2050 (2041-2060) (left) and 2000 and 2070 (2061-2080) (right).

Figure 8   Spatially averaged annual rainfall for Ethiopia through 2090 under SSP5-8.5 using data 
from UK CEDA (see Methodology for details). The 5-year running average is shown as the bold black 
line and the 90% confidence bounds across the 18 CMIP6 models are shown as the gray band.
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Streamflow

To assess future changes in regional hydrology, we used the large-scale hydrological 

model CWatM.²¹ CWatM was developed at the International Institute for Applied Systems 

Analysis (IIASA) in Austria and has been widely used to address questions of changing 

drought risk, groundwater levels, streamflow, water stress, and water supply. Streamflow 

was modeled for two basins: the Blue Nile River upstream of the gauge at Mendaya and the 

Tekeze River upstream of the gauge at Tekeze (Figure 9). These basins were purposefully 

chosen because they had high quality streamflow observations with which to calibrate the 

model, and the model performed well in both calibration and validation in these basins 

(see Methodology). CWatM was run for three time periods: 1981–2019 (2000), 2041–2060 

(2050), and 2061–2080 (2070). The future runs are composed of twenty separate model 

runs, each forced by outputs from a di�erent general circulation model (GCM) under the 

SSP5-8.5 scenario.

²¹ Burek et al., 2020

Figure 9   Map of basins used in hydrological modeling. The watershed of the Blue Nile River above 
Mendaya is shown in light green and the watershed of the Tekeze River above Tekeze is shown 
in light orange. Large black points mark the gauge locations where discharge observations were 
available for each basin.

Currently, flow at Mendaya and Tekeze is characterized by low flow volumes November 

through June and a high flow season July through October (Figure 10). The seasonality of 

flows is expected to persist largely unchanged under mid- and late-century projections. 

However, the magnitude of flows is projected to change substantially (Figures 10 and 

11). Annual mean flows at the two gauges are projected to roughly double, and annual 

7-day mean minimum flows are projected to increase by 60–100%. Annual 7-day mean 

maximum flows are projected to be 2x as large at Mendaya and more than 2.5x as large 

https://doi.org/10.5194/gmd-13-3267-2020
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at Tekeze. There is a considerable range of projections across the GCMs, and although 

some future years may have lower high flows than some current period years, all GCMs 

projected higher time period-averaged high flows than what has been seen in the current 

period. For both locations the di�erences in flow metrics between the 2050 and 2070 time 

periods were small.

Figure 10   Annual mean hydrographs for the Blue Nile River at Mendaya (left) and the Tekeze River 
at Tekeze (right). The blue line shows the average across years in the current period (1981-2019). The 
purple and brown lines show the average across 20 GCMs and all years in the 2050 (2041-2060) 
and 2070 (2061-2080) periods, respectively. Purple and brown shading indicates the full range of 
individual GCM annual mean hydrographs for the 2050 and 2070 periods, respectively.
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Figure 11   Distributions of mean, minimum and maximum streamflow metrics (rows) under three 
time periods for the Blue Nile River at Mendaya (left column) and the Tekeze River at Tekeze (right 
column). Boxplots represent the distribution of yearly values in each period, or the distribution of 
yearly values across all GCMs in the case of future time periods. Whiskers extend a distance of 1.5 
times the interquartile range from the box, which covers the interquartile range.

Trends in flow metrics at the two gauges were indicative of projected changes across 

northwest Ethiopia (Figures 12–17, Table 1). Averaged across the modeled domain, mean 

annual flow was projected to increase by 20 m³/s (129%) by 2050 and 23 m³/s (144%) by 

2070 (Table 1). The magnitude of projected increases was roughly proportional to the 

current flow volume such that larger rivers were projected to see larger increases in mean 

annual flow (Figures 12, 13). Relative changes in mean annual flow were projected to be 

largest in the northeastern and southeastern corners of the modeling domain (not shown).
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Absolute Changes (m³/s)

Mean Flow Minimum Flow Maximum Flow

2050 vs 2000 +20 +3 +58

2070 vs 2000 +23 +4 +68

Relative Changes (%)

Mean Flow Minimum Flow* Maximum Flow

2050 vs 2000 +129 +942700 +71

2070 vs 2000 +144 +1822000 +80

Table 1   Modeling domain-averaged changes in flow metrics. *Relative changes in minimum flows 
should be viewed with caution since they entail division by near-zero current period values in some 
locations. For reference, a 100% increase in flow means the future flow is 2x the current flow volume.

Figure 12   Mean annual discharge during the 
current 2000 period (1981-2019). Discharge data 
is visualized on the CWatM grid. Faint lines show 
the river network.
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Figure 13   Change in mean annual discharge during the 2050 period (2041-2060) compared to the 
current 2000 period (1981-2019) (left) and the 2070 period (2061-2080) compared to the current 
period (right). Discharge data is visualized on the CWatM grid. Faint lines show the river network.

Currently, the annual 7-day mean minimum flows (herea�ter low flows) are highest on 

the main river branches and in the western portion of the modeling domain (Figure 14). 

Looking at the projected changes in low flows, there was little di�erence between the 

2050 and 2070 projections; low flows were projected to increase by 3 m³/s and 4 m³/s 

by 2050 and 2070, respectively, with the largest increases on the main river branches 

(Table 1, Figure 15). 
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Figure 14   Mean annual 7-day minimum 
discharge during the current period (1981-2019). 
Discharge data is visualized on the CWatM grid. 
Faint lines show the river network.

Figure 15   Change in mean annual 7-day minimum discharge during the 2050 period (2041-2060) 
compared to the current period (1981-2019) (left) and the 2070 period (2061-2080) compared to the 
current period (right). Discharge data is visualized on the CWatM grid. Faint lines show the river network.
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The annual 7-day mean maximum flows (herea�ter high flows) are currently highest on 

the Blue Nile River, with values > 5000 m³/s near Mendaya (Figure 16). Averaged across 

the modeling domain, high flows were projected to increase by 58 m³/s (71%) and 68 m³/s 

(80%) by 2050 and 2070, respectively (Table 1). The greatest absolute high flow increases 

(> 2500 m³/s) were projected for the Blue Nile River (Figure 17), while the greatest 

relative increases (100–200% or more) were projected for the northern third of the study 

domain (not shown).

Figure 16   Mean annual 7-day maximum 
discharge during the current period (1981-2019). 
Discharge data is visualized on the CWatM grid. 
Faint lines show the river network.
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Figure 17   Change in mean annual 7-day maximum discharge during the 2050 period (2041-2060) 
compared to the current period (1981-2019) (left) and the 2070 period (2061-2080) compared to 
the current period (right). Discharge data is visualized on the CWatM grid. Faint lines show the 
river network.

Increased mean flow volumes will increase hydropower generation potential across the 

modeling domain. However, infrastructure such as dams and turbines may need to be 

adapted in order to take advantage of greater water availability. Greater flow volumes 

may also help to reduce potential for water conflicts related to competing uses, such 

as hydropower and irrigation. Modest increases in low flow volumes may enhance the 

seasonal consistency of water availability, benefiting biodiversity as well human water 

uses. Large increases in high flow volumes may present a risk to lives, livelihoods, and 

infrastructure, and these risks should be investigated further. Additionally, increased flows 

will likely mobilize higher sediment loads which has implications for reservoir storage 

capacity unless sediment release is incorporated into dam infrastructure planning.

Extreme rainfall

Current extreme rainfall estimates are derived from the Multi-Source Weighted-Ensemble 

Precipitation (MSWEP) dataset. The 100-year 1-day rainfall event is used as the metric to 

represent extreme precipitation because it is commonly used in the scientific community 

and the regulatory frameworks of many countries. From the MSWEP dataset (Figure 18) 

we see that the greatest rainfall amounts for the 100-year event occur in central Ethiopia 

around Addis Ababa, southern Amhara, and central Oromia. High rainfall amounts 

are also present in Gambela, South Ethiopia, and central Somali. The 100-year rainfall 

amounts generally trace the path of the Simien Mountains in northern Ethiopia and the 

Amhar Mountains in central Ethiopia. However, the lack of smoother gradients between 

areas of high rainfall amounts and low rainfall amounts is likely due to spatial artifacts 

https://www.gloh2o.org/mswep/
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caused by limited incorporation of rainfall gauges in MSWEP for Ethiopia. Therefore, this 

result is likely an incomplete picture of extreme rainfall risk.

The present-day 100-year 1-day rainfall amount is expected to increase between 20% 

and 30% by 2050 for much of Ethiopia including eastern Oromia, South Ethiopia, most 

of Amhara, Dire Dawa, and Harari while 30% to 40% increases are projected in eastern 

Tigray (Figure 19). Additionally, the probability of the current 100-year event is expected 

to at least double by 2050 (Figure 20). In those same areas, the 100-year event will 

become a 50-year, 40-year, and even a 30-year event. By 2070, the present day 100-

year rainfall amount will be at least 30% greater for the majority of the country with the 

highest increases in northeast Ethiopia. Eastern Tigray, for example, is projected to see 

rainfall amounts increase by more than 50%. Similar intensification is expected for the 

probability of the current 100-year rainfall event for 2070. Most of Ethiopia is projected 

to see the present day 100-year event become at least a 40-year event while Amhara, Dire 

Dawa, Tigray, Afar, and eastern Oromia will see even greater intensification with return 

periods reaching 20-year in some areas.

Figure 18   The 100-year 1-day rainfall amount in mm based on daily MSWEP data from 1979-2020. 
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Figure 19   Percent increase of the 100-year 1-day rainfall event between 2000 and 2050 (left) and 
2070 (right) under SSP5-8.5.

Figure 20   Future return period of the current (2000) 100-year 1-day rainfall event for 2050 (left) 
and 2070 (right) under SSP5-8.5. 

Flood

While Ethiopia’s rivers provide an abundant resource for hydroelectric generation, they 

are also a source of severe flood risk. Many buildings and farms have been developed 

within floodplains leaving communities at risk of flood events. Over 5.6 million people 

have been a�ected by floods in Ethiopia since 2000 with flood events occurring in 19 

out of the last 25 years.²² While building values are concentrated in urban areas (Figure 

21) such as Addis Ababa, Bahir Dar, Dire Dawa, and Jijiga, the greatest flood losses can 

o�ten be in rural areas. The Ri�t Valley within Oromia, South Ethiopia, Central Ethiopia, 

Tigray, and Amhara is one of these high risk areas as well as the Awash River basin, the 

Shebelle River basin, Dire Dawa, and the Farar river floodplain (Figure 22). Overall, the 

²² EM-DAT

https://www.emdat.be/
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100-year flood in Ethiopia impacts more than 840,000 structures and causes greater 

than $1.2 billion 2020 USD ($1.47 billion in 2025 USD) in building damages. Riverine 

flood risk (pluvial risk was omitted) was estimated using a hydrodynamic model, 

LISFLOOD-FP, in conjunction with depth-damage functions and a building disaggregated 

exposure dataset.²³ While agricultural and building content losses are not modeled here, 

incorporating flooded farmland would undoubtedly increase total damages significantly, 

as growing crops within floodplains is common practice (Figure 23).

Figure 21   Building value at the zone administrative level in millions of USD 2020.

²² Damages were calculated 

by associating damage 

percentages to water 

depth levels for each 

building in Ethiopia. 

An exposure dataset 

representing building 

values for the year 2020 

was then used to assign 

a construction value to 

each building. Damage 

percentages were 

combined with building 

values to estimate total 

building damage for 

the 100-year event 

in Ethiopia and then 

adjusted for inflation 

to 2025 USD (see 

Methodology section for 

a detailed description).
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Figure 22   Building value losses from the 100-year riverine flood aggregated at the woreda level. 
All values are in 2020 USD. Source: Woodwell Climate Research Center.

Figure 23   Inundated buildings (black points) in the Awash River, Oromia 100-year floodplain (left) 
and the Shebelle River, Somali 100-year floodplain (right).

Conclusion, caveats, and future work

This report explores some of the primary climate risks facing Ethiopia over the next 

several decades, including drought, changes in streamflow, extreme precipitation, and 

flooding. We find spatially heterogeneous changes in the risk of extreme drought, which 
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can greatly reduce yields of key nutrient sources (cereals and cow milk). Drought risk 

is projected to increase moderately in southeastern Ethiopia by 2050 and increase 

significantly in northwestern Ethiopia by 2070, despite robust increases in annual 

precipitation. This can be in part explained by the increased evaporative demand of a 

warmer atmosphere and is corroborated by the projections for evapotranspiration, which 

show (for the north central modeling domain) little change in evapotranspiration by 

2050 but spatially averaged increases of 9% by 2070. In contrast to these drying trends, 

increased precipitation is projected to greatly increase the intensity and frequency of 

extreme precipitation events, particularly in Tigray, and to more than double mean annual 

streamflow volumes in north central Ethiopia. Flood risk is generally concentrated within 

the central Ri�t Valley of the country and in Somali where communities have developed 

within the floodplain. We estimate that the 100-year flood impacts more than 840,000 

structures and causes greater than $1.2 billion 2020 USD ($1.47 billion in 2025 USD) in 

building damages. 

While the combination of more dry extremes and more wet extremes may at first seem 

counterintuitive, this is a common storyline in climate change. A warmer atmosphere 

intensifies the water cycle with major impacts on two key processes: increased evaporative 

demand can more e�ectively draw remaining moisture from already dry areas enhancing 

drought risk, and greater atmospheric water holding capacity enables more extreme 

precipitation events. The new, more extreme, hydrological regime can present challenges 

to water management,²⁴ agricultural productivity,²⁵ and natural ecosystems.²⁶

While the analysis presented here is robust and provides a detailed view of climate risk within 

Ethiopia, further improvements could be made through the incorporation of additional local 

data. One significant adjustment would be to bias-adjust and downscale the CMIP6 models using 

4 km resolution gridded data products based on station temperature and precipitation data.²⁷ 

Better representation of temperature and precipitation would improve projections of 

extreme precipitation and drought.

Such local climatological data would also assist in expanding the hydrological simulations 

to the entirety of Ethiopia. The hydrology modeling presented here is based on calibration 

of CWatM at two locations with long-term monthly streamflow observations. Compared 

to daily observations, monthly observations provide limited information with which to 

characterize streamflow discharge, contributing additional uncertainty to the calibration. 

The model calibration for the current modeling domain could likely be improved if there 

were long-term daily streamflow observations available to calibrate to. Given longer 

record lengths and long-term (ideally daily) streamflow observations in other parts 

of the country, it may be possible to extend the modeling domain to cover the entire 

country. Further improvements could include providing CWatM with reservoir release 

observations to better constrain reservoir operations and updating the reservoir layer in 

CWatM to include the e�ect of reservoirs built a�ter 2008.

Agriculture losses from drought in this report have been presented as regional patterns 

with anecdotal references to historical crop and livestock losses to illustrate projected 

impacts. However, much more granular projections for various crops at the household 

level are possible by developing a crop yield model that takes into account agronomic 

data (e.g., yield, fertilizer application, improved seeds, irrigation), soil data from the 

Ethiopian Soil Information System (EthioSIS), terrain and high resolution climate data. 

This analysis would only be possible with the household data collected by the Ethiopian 

Central Statistical Agency for the annual Agricultural Sample Survey. This analysis could 

then be expanded to livestock as well to generate a complete picture of climate impacts 

on agriculture across Ethiopia. 

²⁴Ficklin et al., 2022

²⁵Furtak and Wolińska, 2023

²⁶Sabater et al., 2022; 

Knapp et al., 2008

²⁷ Ethiopian Meteorological 

Institute

https://nsis.moa.gov.et/data/ethiosis
https://doi.org/10.1029/2021EF002487
https://doi.org/10.1016/j.catena.2023.107378
https://doi.org/10.1111/brv.12914
https://doi.org/10.1641/B580908
http://213.55.84.78:8082/maproom/
http://213.55.84.78:8082/maproom/
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Flood risk studies are o�ten limited to single watersheds or cities due to the computational 

requirements of simulating floods at large spatial scales. As part of this analysis, we have 

developed a country-wide riverine flood model that provides policymakers with much 

wider scope and higher resolution (30 meters) than previously available. Still, there are 

several pathways for improving the flood risk assessment that were not incorporated 

in this report due to data unavailability. First, incorporating local digital elevation 

models (DEMs) from LiDAR and the recently released FathomDEM²⁸ where LiDAR is 

not available would increase the flood model’s accuracy. Second, hydro-enforcement of 

the DEM to represent river channels in the elevation data would simulate flows more 

realistically. Third, using streamflow data from gauges and a country-wide calibrated 

hydrology model is an important enhancement for properly estimating flooded areas. 

Fourth, flood risk is currently slightly underestimated due to the limited bu�ering extent 

of the simulated watersheds. This could be adjusted by increasing bu�er radius for areas 

with large floodplains. And fi�th, simulating pluvial flooding would provide a more holistic 

view of flood risk rather than solely focusing on riverine risk. 

Developing such a flood model would allow for the creation of a catastrophe flood model. 

A proof-of-concept of a catastrophe model was presented in this report that estimated the 

damages to buildings from the 100-year flood. Simulating more flood events would be a 

straightforward procedure and lead to the construction of annual average loss estimates 

in the current and future climates. Average annual losses, and catastrophe models in 

general, are highly useful for policy planning, insurance procurement, and loss and 

damage projections. Further improvements to the catastrophe model would involve high 

resolution building exposure data (i.e., commercial vs industrial areas), localized depth-

damage functions, and high resolution agriculture exposure data (i.e., crop production at 

the household level). 

The focus of this report has been future climate projections to inform long-term 

policymaking. However, there is also room for analysis that would benefit operational 

and day-to-day disaster prevention. For instance, Google’s DeepMind recently released 

GenCast, a probabilistic weather model that uses machine learning to generate forecasts.²⁹ 

Such models have been shown to outperform state-of-the-art numerical models in less 

computational time. Incorporating such a tool into disaster prevention and response 

operations would bring greater flexibility and reduce resources required for weather 

forecasting. Another operational focused analysis would be the creation of indices 

specifically for parametric insurance against drought and flooding. A large number of 

Ethiopian households participate in parametric insurance programs.³⁰ With the uptake 

of insurance products likely increasing in the future, climate indices that accurately 

represent a loss in income are important to reduce basis risk in parametric products.³¹ 

Creation of new metrics, such as flooded areas using satellite imagery, will also be crucial 

for expanding parametric insurance access.

This report provides actionable data insights that enable decision-makers and 

communities to plan for resilience strategies, though some of the model’s e�ectiveness 

and accuracy could be further improved with the incorporation of additional local data. 

The report highlights the need for various policies and measures, but building drought- 

and flood-resilient systems with advanced, AI-integrated prediction tools stands out as a 

top priority. This risk assessment establishes patterns in extreme precipitation, flooding, 

drought, and streamflow, enhancing Ethiopia’s deep knowledge systems and providing 

evidence for the implementation and strengthening of existing national frameworks.

²⁸Uhe et al., 2025

²⁹Price et al., 2024

³⁰World Food Programme

³¹ PwC, 2024

https://doi.org/10.1088/1748-9326/ada972
https://doi.org/10.1038/s41586-024-08252-9
https://www.wfp.org/publications/social-protection-and-microinsurance-series-case-studies-bangladesh-fiji-ethiopia
https://www.pwc.ch/en/insights/fs/basis-risk-parametric-insurance.html
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Methodology

Throughout this report we use the CMIP6 SSP5-8.5 scenario, a fossil-fuel intensive 

pathway. We consider three time periods in this analysis: a historical period (early 1980s 

to mid-late 2010s depending on the climate variable; labeled 2000), a near future time 

period (2041–2060; labeled 2050) and a late future time period (2061–2080, labeled 

2070). Under the SSP5-8.5 scenario, these periods correspond to projected warming of 

1.1°C, 2.6°C, and 3.6°C, respectively, relative to the preindustrial period (1850–1900). 

These levels serve as guideposts for climate policy. Consider the Paris Accord, the main 

global climate framework whose goal is to limit warming to no more than 1.5°C. Given 

that both 2023 and 2024 exceeded 1.5°C–and that policies-in-place are on track for closer 

to 3.0°C of warming with extreme outcomes closer to 4.5°C, exploring higher warming 

levels is warranted.  This is especially useful given recent changes in climate ambition and 

uncertainty surrounding the timing, impact, and interaction of climate tipping points.

Extreme Precipitation

In this report, we present results for future-projected extreme rainfall using a 

nonstationary (NS) methodology for various intensity-duration-frequency (IDF) curves. 

In a NS approach, precipitation estimates are calculated for the entire time period (i.e., 

1971–2100) using a temporal parameter to represent changes in extreme precipitation 

through time. The NS approach is well suited for engineering applications as future 

relative changes are more realistic compared to a quasistationary approach which 

compares two rainfall distributions built from two distinct time periods according to the 

United States National Oceanic and Atmospheric Administration (NOAA).³³

The data used in this analysis consist of daily precipitation data from 18 Coupled Model 

Intercomparison Project Phase 6 (CMIP6) climate models for the SSP5-8.5 warming 

scenario that has been bias-adjusted and downscaled to 25-km resolution over Ethiopia 

using a Bias Correction Constructed Analogues with Quantile mapping reordering 

(BCCAQ) method³⁴ and MSWEP observation data (herea�ter referred to as UK CEDA). 

BCCAQ is a combination of two bias adjustment methods which allows for e�ective 

replication of extreme events and spatial covariance at daily time steps.³⁵ MSWEP was 

chosen as the historical precipitation dataset from four observational datasets and UK 

CEDA was chosen as the projected downscaled climate model dataset for this study from 

5 downscaled climate model datasets due to their ability to most accurately represent the 

distribution of historical country-wide averages of annual rainfall and historical spatial 

patterns of average annual rainfall. In Figure 24 we show the distribution of annual 

rainfall from 1981 to 2014 from 10 di�erent rainfall datasets which includes historical 

only datasets (Abebe (2017), ERA5, CHELSA, CHELSA-W5E5, and MSWEP) as well as 

downscaled climate model sources and methodologies (Carbon Plan, Climate Impact Lab, 

ISIMIP, NASA NEX, and UK CEDA).³⁶ We use the Abebe (2017) dataset as the groundtruth 

since the dataset only used rainfall gauge data. Among the historical-only data, the 

distributions of CHELSA-W5E5 and MSWEP most closely resemble the distribution of 

Abebe (2017). We chose MSWEP instead of CHELSA-W5E5 due to its documented strong 

performance in representing daily rainfall from radar³⁷ and rainfall gauges³⁸ which is 

important for extreme precipitation analyses.

Among downscaled climate model datasets, three resemble the distribution of annual 

rainfall of Abebe (2017): ISIMIP, NASA NEX, and UK CEDA. To select one product from 

these three datasets, we considered the spatial patterns of average annual rainfall over 

1981-2014 across Ethiopia (Figure 25). We removed NASA NEX from consideration given 

³² Zhong and Rojanasakul, 

2024; Wunderling et al., 

2024

³³ NOAA, 2022

³⁴Gebrechorkos et al., 2023

³⁵ Gebrechorkos et al., 2023

³⁶Abebe, 2017; ERA5; 

CHELSA; CHELSA-W5E5; 

GLoH20, 2024; Carbon 

Plan; Climate Impact Lab; 

Bias-adjustment and 

downscaling of CMIP6 

models was done using 

ISIMIP methods from 

Lange (2019) and Lange 

(2021) with CHELSA-

W5E5 observational data;  

NASA NEX

³⁷ Beck et al., 2019

³⁸Beck et al., 2017

https://www.nytimes.com/interactive/2024/08/11/climate/earth-warming-climate-tipping-points.html
https://www.nytimes.com/interactive/2024/08/11/climate/earth-warming-climate-tipping-points.html
https://doi.org/10.5194/esd-15-41-2024
https://doi.org/10.5194/esd-15-41-2024
https://hdsc.nws.noaa.gov/pfds/files25/NA14_Assessment_report_202201v1.pdf
https://doi.org/10.1038/s41597-023-02528-x
https://doi.org/10.1038/s41597-023-02528-x
https://doi.org/10.1016/j.dib.2017.07.052
http://10.24381/cds.f17050d7
https://chelsa-climate.org/
https://doi.org/10.5194/essd-15-2445-2023
https://www.gloh2o.org/mswep/
https://carbonplan.org/research/cmip6-downscaling-explainer
https://carbonplan.org/research/cmip6-downscaling-explainer
https://planetarycomputer.microsoft.com/dataset/group/cil-gdpcir
https://doi.org/10.5194/gmd-12-3055-2019
https://zenodo.org/records/4686991
https://zenodo.org/records/4686991
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
https://doi.org/10.5194/hess-23-207-2019
https://doi.org/10.5194/hess-21-6201-2017
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that it shows little spatial heterogeneity of rainfall. While ISIMIP is a higher resolution 

dataset, initial tests of this dataset in the extreme precipitation estimation framework 

revealed spatial artifacts leaving UK CEDA as the final choice for estimating future 

extreme precipitation in Ethiopia.

Figure 24   Ethiopia annual rainfall distribution for 1981-2014 from 10 data sources. Box plots with 
lighter hues represent distributions with lower means while box plots with darker hues represent 
distributions with higher means.
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Figure 25   Ethiopia average annual rainfall from 1981-2014 from 8 di�erent sources.

We use a perimetric fitting method to estimate the parameters of the Generalized 

Extreme Value (GEV) distribution. For each target pixel, a 40-mile radius is used to 

capture the annual maxima of the surrounding pixels. Each pixel’s surrounding annual 

maxima is given a weight using a triweight kernel function based on distance (e.g., pixels 

≥ 40 miles have zero weight). The log-likelihood function of the GEV distribution is then 

minimized with the Nelder-Mead algorithm using the annual maxima and pixel weights 

to estimate the GEV parameters. The beta distribution of penalized coe�cients ranging 

between -0.5 and 0.5 is used to constrict the shape parameter as specified by NOAA.³⁹

To estimate future daily precipitation frequency estimates (PFEs), the biases (ratio) 

between the baseline period and the MSWEP daily PFEs are calculated and then 

multiplied by the future climate model daily PFEs. The MSWEP daily PFEs are created 

using a perimetric method to fit the GEV distribution as was done for the CMIP6 data but 

for the 1979–2020 time period and with no temporal parameter.

To incorporate temporal changes through the data series, five parameters are fitted to 

the annual maxima of 1971–2100. The parameters are a₀, a₁, b₀, b₁, c₀ which are used to 

represent the GEV parameters:

location = a₀+a₁RCP

scale = exp(b₀+ b₁RCP)

shape = c₀

where RCP represents the radiative forcing under a specific scenario for each annual 

maximum. Radiative forcing data was acquired from the Reduced Complexity Model 

³⁹NOAA, 2022

https://hdsc.nws.noaa.gov/pfds/files25/NA14_Assessment_report_202201v1.pdf
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Intercomparison Project (RCMIP)⁴⁰ for SSP5-8.5. Three rounds of parameter fitting were 

completed to ensure convergence for all pixels. The first round is solely for generating 

initial estimates for a₀, b₀, and c₀ which is done by only using those three values to 

represent the location, scale, and shape parameters, respectively. The GEV distribution is 

fitted using the entire time series (1975–2100) with the initial parameters set as location: 

the mean of the annual maxima series (AMS) for the target pixel; scale: the standard 

deviation of the AMS for the target pixel; shape: -0.1, which represents the expected 

value of the beta distribution.⁴¹ The natural log of the scale is used to ensure the scale 

is positive. In the second round of fitting, initial parameters to the optimization scheme 

are set as a₀: the previously fitted location parameter for the target pixel; a₁: zero, which 

represents no trend; b₀: the previously fitted scale parameter for the target pixel; b₁: zero, 

which represents no trend; c₀: the previously fitted shape parameter for the target pixel. 

For the third round of fitting, the initial parameters are set as the average parameter 

value within a three-pixel radius around the target pixel. 

Drought

Drought risk is assessed using the Vicente-Serrano’s Standardized Precipitation and 

Evapotranspiration Index (SPEI).⁴² We first calculated potential evapotranspiration 

(PET) following the Hargreaves formulation. PET represents the atmospheric evaporative 

demand, or the amount of moisture that the surface could lose due to heat and radiation. 

The di�erence between PET and precipitation gives us an estimate of the water balance. 

A 12-month running sum was then applied to the water balance time series to reduce 

noise and capture significant anomalies. Next, the anomalies from the historical period 

were standardized by calendar month, thus accounting for seasonal e�ects. A�ter 

standardization, we were able to identify the negative water balance anomaly level 

with 10% or less chances of occurring in the 1985–2015 (2000) time period. The 10th 

percentile of SPEI is used to determine dry periods because of its prevalent use as a 

measure of an extreme event.⁴³ This threshold was lastly used to estimate the chances 

of experiencing the same negative anomaly in the future time periods of 2041–2060 

(2050) and 2061–2080 (2070). Similarly to the extreme precipitation analysis, the UK 

CEDA dataset was used for the SPEI calculation. We use SPEI as the drought metric 

since it considers both precipitation and PET whereas other approaches consider only 

precipitation (e.g. the Standardized Precipitation Index (SPI)) or only temperature and 

precipitation (e.g. the Palmer Drought Severity Index (PDSI)).

Streamflow and Evapotranspiration

Historical and future streamflow and evapotranspiration were modeled using the 

Community Water Model (CWatM⁴⁴), a large-scale hydrological model developed at the 

International Institute for Applied Systems Analysis (IIASA) in Austria. CWatM accounts 

for surface and groundwater processes, river routing, water demand, and reservoirs built 

before 2009. For this work, the model was run at daily temporal resolution and 5 arcmin 

spatial resolution.

For calibration and the historical simulation, all climate forcings except precipitation 

were taken from the W5E5v2.0⁴⁵ dataset. The W5E5v2.0 forcings are at 0.5° spatial 

resolution and include mean air temperature, minimum air temperature, maximum 

air temperature, surface pressure, relative humidity, wind speed, and downwelling 

shortwave and longwave radiation. Initial results showed better performance when using 

precipitation data from MSWEP instead of W5E5v2.0. MSWEP⁴⁶ precipitation data is 

available at 0.1° spatial resolution and had to be aggregated to the W5E5v2.0 grid to work 

with the other forcings. For the future periods, climate data from 20 general circulation 

⁴⁰RCMIP

⁴¹ Martins and Stedinger, 

2000

⁴²Vicente-Serrano et al., 

2010

⁴³Wen et al., 2024

⁴⁴Burek et al., 2020

⁴⁵Lange et al., 2021

⁴⁶Beck et al., 2019

https://www.rcmip.org/
https://doi.org/10.1029/1999WR900330
https://doi.org/10.1029/1999WR900330
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1038/s41597-024-03883-z
https://doi.org/10.5194/gmd-13-3267-2020
https://doi.org/10.48364/ISIMIP.342217
https://doi.org/10.1175/BAMS-D-17-0138.1
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models (GCMs) from the CMIP6 experiment were bias-adjusted and downscaled to 

0.5° spatial resolution using the ISIMIP3BASD v2.5 methodology.⁴⁷ CWatM was run 

with data from the SSP5-8.5 scenario for the periods 2039–2060 and 2059–2080 to 

represent conditions around 2050 and 2070, respectively. The first two years of each 

time period were considered spinup and not included in analysis. All climate forcings 

were downscaled by CWatM to 5 arcmin resolution using the high resolution WorldClim⁴⁸ 

dataset.

CWatM was calibrated using a multi-basin, leave-future-out cross-validation approach. 

Two sites were selected for calibration that had long-term continuous data with no 

obvious errors and minimal streamflow regulation: Mendaya on the Blue Nile River 

(9.943°N, 35.677°E) and Tekeze on the Tekeze River (13.348°N, 38.742°E) (Figure 9). 

Streamflow observations for these sites were provided by the Nile Basin Secretariat.⁴⁹ 

The leave-future-out cross-validation entailed categorizing the observation years as 

warm years and cool years based on basin-averaged annual mean air temperature 

from W5E5v2.0. Streamflow observations from the coolest 50% of years were used for 

calibration and observations from the warmest 50% of years were used for validation. This 

approach provides insight on the model’s ability to transfer to warmer future conditions.

CWatM was calibrated using the evolutionary algorithm NSGA-II⁵⁰ from the DEAP⁵¹ 

framework. The Kling-Gupta E�ciency⁵² (KGE) was used as the objective function. The 

calibration was implemented on the two basins simultaneously and the basin-mean KGE 

computed on the monthly cool-year streamflow time series was used as the run KGE. 18 

parameters pertaining to soil water, lakes, reservoirs, and groundwater were calibrated. 

The calibration was run on a virtual machine with 32 cores and used an initial population 

size of 640 followed by 30 generations of 32 runs. The parameter settings in the best 

identified runs were used in the historical and future simulations. 

The best calibration site-mean KGE was 0.40 and the site-mean validation KGE was 

0.45. At Mendaya, the calibration and validation KGEs were 0.25 and 0.27, respectively. 

The simulation overestimated both low and high flows and the timing of peak flows was 

shi�ted several weeks late relative to observations (Figure 26). Further investigation is 

needed to understand the cause of these biases and develop a way to minimize them. 

At Tekeze, the calibration and validation KGEs were 0.55 and 0.64, respectively. The 

simulation captured low and high flows well, although the timing of peak flow was slightly 

later than in the observations (Figure 27). We note that CWatM accounts for the e�ects of 

Chomen Lake (a reservoir) but does not account for the Tekeze dam and reservoir since 

they were not completed until 2009. This did not a�ect the calibration, since observations 

before 2000 were used, however it does mean that the simulations for Tekeze represent 

naturalized flow.

⁴⁷Lange, 2019; Lange 2021

⁴⁸Fick and Hijmans, 2017

⁴⁹Nile Basin Initiative, 2021

⁵⁰Deb et al., 2002

⁵¹ Fortin et al., 2012

⁵² Kling et al., 2012

https://doi.org/10.5194/gmd-12-3055-2019
https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_Gnsz7CO.pdf
https://doi.org/10.1002/joc.5086
https://nilebasin.org/sites/default/files/2023-09/State%2520of%2520Basin%2520Report%25202021_0.pdf
https://doi.org/10.1109/4235.996017
https://www.jmlr.org/papers/volume13/fortin12a/fortin12a.pdf
https://doi.org/10.1016/j.jhydrol.2012.01.011


CLIMATE RISK ASSESSMENT: ETHIOPIA

30

Figure 26   Comparison of  monthly streamflow at Mendaya from observations (black lines) and 
the best simulation (blue dashed lines). The top panel shows the full time period, the bottom left 
panel shows the annual mean hydrograph (i.e. averaged across years), and the bottom right panel 
shows the cumulative density function of the two streamflow time series.



CLIMATE RISK ASSESSMENT: ETHIOPIA

31

Figure 27   Comparison of  monthly streamflow at Tekeze from observations (black lines) and the 
best simulation (blue dashed lines). The top panel shows the full time period, the bottom left panel 
shows the annual mean hydrograph (i.e. averaged across years), and the bottom right panel shows 
the cumulative density function of the two streamflow time series.

Flooding

Present day flood risk in Ethiopia is evaluated using the LISFLOOD-FP v8.1 hydrodynamic 

model and simulating the 100-year flood.⁵³ LISFLOOD-FP is a two-dimensional raster 

hydraulic model capable of solving all terms of the shallow water equations and has been 

extensively used from the river reach scale to continental simulations.⁵⁴ Here we use 

the local inertia solver of LISFLOOD-FP which neglects the convective acceleration term 

of the shallow water equations. The 100-year flood was chosen given its common use in 

the scientific literature and has been used as a regulatory floodplain standard in several 

countries. We solely model fluvial flood risk; however, pluvial risk could be introduced 

into the model at a future stage. The Forest and Buildings Removed Digital Elevation 

Model⁵⁵ (FABDEM) was used as the elevation data for the LISFLOOD-FP simulations. 

Floodplain friction values were assigned using the DynamicWorld land cover dataset 

from January 1, 2024. Land cover values were then converted to friction estimates using 

data adopted by the United States Natural Resource Conservation Service in Kansas.⁵⁶ 

The 100-year streamflow estimates were taken from the extreme flow data generated 

for di�erent return periods by GEOGloWS v2.⁵⁷ Since flows from GEOGloWS represent 

1-day averages, boundary conditions for LISFLOOD-FP were created to represent a linear 

⁵³LISFLOOD-FP developers, 

2022

⁵⁴Shaw et al., 2021

⁵⁵Hawker et al., 2022

⁵⁶Janssen et al., 2016

⁵⁷ GEOGloWS, 2022
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https://doi.org/10.5194/gmd-14-3577-2021
https://doi.org/10.1088/1748-9326/ac4d4f
https://rashms.com/wp-content/uploads/2021/01/Mannings-n-values-NLCD-NRCS.pdf
https://data.geoglows.org/geoglows-2-0
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increase of flow for the first 8 hours of simulation time before reaching the peak flow 

which was maintained for the remainder of the 24-hour simulation. The flood model 

was not validated since historical daily streamflow was not available for reconstructing a 

historical event. Future analysis would include validation. 

For computational e�ciency, each watershed within the TDX Hydro Version 1.0 within 

Ethiopia, used by GEOGloWS, was modeled separately. Each watershed was given a 

bu�er of 1 km to reduce edge e�ects in the final output. The model was run on a high 

performance cluster designed in the Google Cloud Platform environment and took 

approximately 48 hours to complete 59,510 watersheds. Results from all the watershed 

simulations were combined in the end to create a seamless raster over Ethiopia by taking 

the maximum value of any overlapping areas between watershed extents. To determine 

the financial losses from the 100-year riverine flood, an exposure dataset was created 

using building stock values from the SSAHARA⁵⁸ project which were then assigned to 

individual building footprints from the Overture Maps Foundation.⁵⁹ Exposure values 

represent 2020 USD. For a particular flood depth, a building loss percentage was assigned 

to a building using depth-damage functions for Africa developed by the European 

Commission Joint Research Centre.⁶⁰

Annex 1

⁵⁸SSAHARA, 2022

⁵⁹Overture Maps 

Foundation

⁶⁰Huizinga et al., 2017

Figure A.1   Inundated buildings (black points) in the Awash River, Afar 100-year floodplain (left) and 
Jinka, South Ethiopia 100-year floodplain (right). Flooded buildings are denoted by black outlines.

https://www.globalquakemodel.org/product/africa-exposure
https://overturemaps.org/
https://overturemaps.org/
https://doi.org/10.2760/16510
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