Research Assistant Colleen Smith crouches low to the ground over a tray of crumbled soil. Using a boxy grey device that looks like a heavy-duty flashlight, she presses the flat glass end against the soil and fires a beam of infrared energy that bounces off the soil and back into the device’s sensor. 

In moments, a readout pops up on a tablet screen, showing a spectrum of reflected light. With some analysis, Smith will have data on the chemical makeup of this patch of ground. With enough data points, she could estimate the soil properties of an entire field, pasture, ranch or farm, and how it might be changing over time. 

Soil spectroscopy is a newer but fast-growing technique employed by scientists studying soil composition. At Woodwell Climate Research Center, a group led by Carbon Program Director Dr. Jonathan Sanderman has been spearheading its use to help improve the availability and affordability of reliable soil quality information, which is essential if we want to get serious about soil carbon sequestration as a natural climate solution.

Why soil spectroscopy?

“The heart of the technology is essentially getting the fingerprint of the soil, which tells us something about the overall chemical makeup of that sample,” says Dr. Sanderman.

The principles of soil spectroscopy are based in nuclear physics. Elements in the soil react in unique ways to the energy from the electromagnetic spectrum, reflecting some wavelengths and absorbing others. The reflected wavelengths give scientists clues to which minerals and elements are present and in what quantities.

That information can then be related to certain soil properties, like whether it’s suitable for certain crops, or whether it’s effectively sequestering carbon. The former is valuable information for producers like ranchers or farmers who need to make land management decisions. The latter is what climate researchers are most interested in. Soil spectroscopy represents an opportunity to marry the interests of both.

In a single scan, soil spectroscopy can estimate carbon, nitrogen, phosphorus, moisture, pH levels, and more. Traditional methods rely on multi-step chemical analyses to get you the same information— a time consuming and expensive process that could involve grinding, drying, weighing, mixing with reagents, and other steps to extract information on just one or two indicators of soil quality. 

“With soil spectroscopy, you can get a pretty large suite of properties from one sixty second scan. A lab needs easily $2 million worth of instruments to be able to make all the same measurements using traditional methods,” says Dr. Sanderman. The most precise soil spectrometers can cost $100,000, but lower resolution and portable ones are substantially cheaper. “The speed and cost of spectroscopy are unmatched.”

Soil Spectroscopy for Global Good

These benefits make soil spectroscopy a method with big potential, but according to Dr. Sanderman there is still work to be done in refining the methodology to get universally accurate data. Alongside collaborators from the University of Florida and OpenGeoHub, he started the Soil Spectroscopy for the Global Good project (SS4GG) to jumpstart that work.

The project focused on two main efforts. The first was an extensive inter-laboratory comparison to understand how much the accuracy of scans varies between different instruments. Twenty laboratories across the globe participated, scanning identical samples which were then compared to the output from a lab widely regarded as the gold-standard in accuracy. The results were published in Geoderma late last year.

“We demonstrated that there is lab-to-lab variability, but also that there are procedures we can use to correct for differences between laboratories and get better integration of data,” says Postdoctoral Researcher, Dr. José Safanelli, who coordinated the study.

The second goal was to pool data from different labs into one accessible and open-source resource that also provides tools to analyze the data. The Open Soil Spectral Library (OSSL) now hosts over 100,000 soil spectra from across the globe that scientists can incorporate into their research and offers an engine for analysis. The idea is that with more people using and contributing soil spectral data, the faster the technology and the information gained from it will advance. 

“We hope that the OSSL will be a driver of the soil spectroscopy community, advancing the pace of scientific discovery, and promoting innovation,” says Dr. Safanelli.

Building a community of soil scientists

Throughout the project, SS4GG efforts remained dedicated to transparency. 

“We were always available to answer questions. We shared best practices and gave advice on which instruments are better, which manufacturers are the best in the market, and which procedures to use to collect spectra,” says Dr. Safanelli. 

According to Dr. Sanderman, that openness fostered trust and collaboration— in both contributing data to the OSSL and participating in the inter-laboratory study— strengthening the community of scientists using soil spectroscopy.

“As we built momentum, more groups began to contribute,” says Dr. Sanderman. “It’s been great to see people realizing the value of collaborative, open science. People are now taking advantage of the foundation we’ve built.”

The soil spectroscopy community convened this past year for several webinars and presentations, including the Agronomy, Crop, and Soil Science Society meeting, where Drs. Sanderman and Safanelli hosted a training workshop and symposium on spectroscopy, as well as a two-day immersive workshop on the future of the field. 

“We all benefit when this technology is more widely used,” says Smith.

Soil carbon as a climate solution

Speeding up the pace of soil science is key for developing climate solutions. Agricultural soils represent a large potential carbon sink; changes in farming and ranching practices can encourage sequestration of carbon in the soils. Soil carbon markets, and other payment for ecosystem services schemes could incentivise producers to make sustainable management decisions and soil spectroscopy could be a useful tool to track their contributions.

“The ultimate goal is to better monitor soils across landscapes to make food production more sustainable,” says Dr. Safanelli.

The handheld device that Smith was using is a test case for the speed and convenience of soil spectroscopy for analyzing soil carbon. If testing the quality of your soils can be as simple as a 60 second measurement with a low-cost piece of portable equipment, and the scan can get you additional information about soil fertility, then why not participate? 

“We are trying to verify that we actually are sequestering carbon, and that requires lots and lots of measurements. So this is where we start moving into field-based spectroscopy,” says Dr. Sanderman. “If we can eliminate bringing the sample back to the lab altogether, we’re cutting our costs by another order of magnitude and could potentially scan several hundred points in a field in a day.”

Smith theorizes that cost could be further diffused through farming cooperatives or extension offices offering soil testing using inexpensive spectrometers. “Soil spectroscopy could be an easier way to get answers to big questions,” says Smith. “And that’s exciting.”

With the OSSL now up and running, the team is now focusing efforts on maintaining the growing network of interested soil researchers, pursuing new opportunities for collaboration as they arise.

“The network is getting stronger,” says Dr. Safanelli. “More people are coming and reaching out to us. That’s our biggest contribution: creating a network and sharing information across the community.”

Two new Polaris Project Alumni have been named John Schade Memorial Scholarship recipients. The fund, established in the memory of Dr. John Schade, who founded Polaris and was integral to its success, is dedicated to supporting the higher education goals of students that reflect Dr. Schade’s values of mentorship, education, leadership, equity, and the advancement of Arctic science. 

Mandala Pham

Mandala Pham studies geophysics and history at the University of Texas at Austin. As an undergraduate researcher, she has explored the caves of central Texas, studied marine geophysics in Corpus Christi Bay, and peered back in time to past climates through geology. Her experience in different lab groups spurred her interest in field work, driving her to pursue graduate opportunities to continue getting up close with geology. 

During her Polaris experience, however, Pham’s research focused less on geology and more on ecology. Inspired by her father’s affinity for beautiful, rare, and sometimes poisonous mushrooms, Pham studied the response of Arctic mushroom species to wildfire, comparing biodiversity between burned and unburned areas of land. 

As part of Polaris, Pham saw a glacier in person for the first time, which reinforced her commitment to dedicate her career to studying and fighting climate change. 

“From childhood anxieties to professional aspirations, I’ve taken tackling climate change as my personal direction in life,” says Pham. “I want to be part of the solution rather than spending my time ruminating on the worst-case scenarios.”

She hopes to get her Ph.D. in geophysics, studying glaciology. After that she has aspirations for either full time research or a career in the National Parks Services. Pham is also interested in screenwriting, pig farming, and perhaps one day, becoming a lighthouse keeper.

Aaron MacDonald

Aaron MacDonald’s passion for ecology began during his childhood spent on long family camping trips. Through his studies at University of Toronto, MacDonald has gained experience in oceanography and fisheries science through the Woods Hole Partnership Education Program (PEP) and the National Oceanic and Atmospheric Administration (NOAA) Inclusive Fisheries Internship. His field experience bolstered his confidence to pursue a scientific career.

With Polaris, MacDonald studied the role of willow ptarmigan, a common Arctic ground bird, as drivers of ecosystem dynamics on the tundra. For his career, he hopes to pursue a graduate degree and get involved with mentorship programs like Polaris. MacDonald firmly believes everyone should have the opportunity to study science, and is grateful for the support he received that has allowed him to pursue this career.

“Everyone who wants to is capable of scientific research and everyone has a place in STEM,” says MacDonald. “I have questioned many times if there is a place for me in STEM, but with the support of those around me I am determined to make it.”

In his spare time, MacDonald enjoys running and video games with friends.

Both recipients will receive funding to continue their education and pursuit of science, mentorship, and equity, encouraging a new generation of Arctic scientists working to change the world.

1. Collaborating with Communities

This year, Woodwell Climate’s Just Access Initiative went global. Just Access works in close partnership with communities to provide tailored, actionable climate risk reports for Rio Branco, Brazil; Addis Ababa, Ethiopia; Summit County, Utah; and Lawrence, MA. At COP28, Just Access released their latest report in collaboration with the Ministry of Environment and Sustainable Development of the DRC, which focused on climate risks and potential solutions in the country and identified carbon markets as a potential funding mechanism for adaptation efforts.

Just Access collaborates with local officials and advocates to ensure the final reports cover information critical to their community’s planning. So far, 14 reports have been completed and more are on the way.

Read the report.

2. Tongass National Forest Protection

In January of 2023, the Biden Administration restored protections against logging and road-building for more than 9 million acres of the Tongass National Forest, the world’s largest intact temperate rainforest. 

This came after Woodwell Climate’s Dr. Wayne Walker and Geospatial Analyst Seth Gorelik, along with long-time collaborator Dr. Dominick DellaSalla of Wild Heritage, delivered a research report to the Biden administration showing massive carbon stores in Tongass National Forest and highlighting the importance of roadless areas. 

3. Citizen Science with Science on the Fly

In 2023, Science on the Fly’s (SOTF) focused their activities on stewarding their community of scientists. Together they collected more than 3,000 water samples from hundreds of locations around the globe. SOTF leverages the passion and dedication of the global fly fishing community to gather data on the health of rivers across the world. With this data, SOTF can improve our understanding of how watersheds and river systems change over time due to climate change and local effects.

Read about the project’s activities this year.

4. Training the Next Generation of Researchers

We sent 10 Polaris Project students into the field this summer. The Polaris Project engages the brightest young minds from a diversity of backgrounds to tackle global climate research in one of Earth’s most vulnerable environments: the Arctic.

Students conducted their own research projects over two weeks at a field research station near Bethel, Alaska. Afterwards, they returned to the Center to analyze samples, and presented their findings at the American Geophysical Union meeting in December.

Woodwell Climate also hosted several interns through the Partnership Education Program. These undergraduate students participated in research and communications activities across the center.

Read PEP intern, Jonathan Kopeliovich’s story about research in Howland Forest.

5. Convening Critical Conversations

Woodwell Climate has been conducting tropical forest research in Brazil for nearly two decades alongside partner organization IPAM Amazônia. This year, Water Program Director, Dr. Marcia Macedo and collaborators, including Dr. Ane Alencar of IPAM, convened a multi-day workshop in Brazil that produced a policy brief on forest degradation. They then organized experts to submit public comments on Brazil’s updated policy for controlling Amazon deforestation, which for the first time also addresses forest degradation.

Read the policy brief here.

Across the globe, Permafrost Pathways partner, Alaska Institute for Justice (AIJ), hosted a “Rights, Resilience, and Community-Led Adaptation” workshop on Dena’ina homelands in Anchorage, Alaska. The two-day workshop created space for Tribes to share their expertise with each other and connect face-to-face with federal and state government representatives to access resources and technical assistance.

Read more about the workshop.

6. Representing Our Expertise

Our experts showed up as thought leaders this year at several high profile events. As just a few examples, Woodwell Climate’s Arctic Program Director Dr. Sue Natali and Senior Science Policy Advisor Peter Frumhoff both spoke on panels alongside other leading voices in climate at SxSW in Austin, TX. Senior Geospatial Analyst, Greg Fiske attended the Esri User Conference, where his topographic map of Alaska garnered two awards. And Assistant Scientist, Dr. Ludmilla Rattis gave a talk at TED Countdown about her research on the role of Tapirs in rainforest restoration. (Recording coming in early 2024)

7. Making Headlines

Woodwell Climate team members showed up in over 5,000 media stories this year. Our scientific leadership provided quotes for a broad range of high profile climate stories in New York Times, Reuters, Boston Globe, CNN and Grist, just to name a few. Senior Scientist Dr. Jen Francis was quoted over 4.2K times, appearing in major news outlets like the Washington Post and AP News to provide accessible context about the links between climate change and extreme weather events. 

8. Rebuilding an Arctic Research Station

Last fall, Scotty Creek Research Station in Canada—one of the only Indigenous-led climate research stations in the world—was almost entirely consumed by a late-season wildfire. Woodwell Climate’s Permafrost Pathways project is providing rebuilding support to the Łı́ı́dlı̨ı̨ Kų́ę́ First Nation. Project scientists Dr. Kyle Arndt and Marco Montemayor visited the site for two weeks this spring to restore an essential carbon monitoring tower.

Read the story of Scotty Creek.

9. Advancing the Scientific Literature

Our researchers published 80 peer-reviewed scientific publications this year. From the Arctic to the Tropics, from soil concentrations to river concentrations, Woodwell Climate had a part in discovery.

Assessing carbon stocks and accumulation potential of mature forests and larger trees in U.S. federal lands

Recent trends in the chemistry of major northern rivers signal widespread Arctic change

Grain-cropping suitability for evaluating the agricultural land use change in Brazil

Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming

Explore all our publications.

10. Leading on the World Stage

Woodwell Climate’s President & CEO Dr. Max Holmes brought Woodwell Climate to the main stage of CERAWeek, Green Accelerator Davos, GenZero Climate Summit in Singapore, Climate Week NYC, and Mountainfilm Festival. He discussed cutting-edge climate science alongside notable figures like Bill McKibben and former Colombian President Iván Duque Márquez.Read about Dr. Holmes’ time at Davos.

COP 28, the annual meeting of United Nations delegates to set goals and report progress on addressing climate change, closed last week in Dubai after a two-week rollercoaster that was both promising and discouraging. When weak draft language surfaced, just a few days before negotiations were set to close, shying away from any clear call to eliminate fossil fuels, the outlook was not optimistic. But nearly overnight, representatives managed to arrive at a deal. For the first time in 28 years of negotiations, the final agreement included direct reference to the need to “transition away from fossil fuels in energy systems, in a just, orderly, and equitable manner.”

The language is not as strong as many hoped, but it still represents a historic step forward, and came as a positive surprise after controversy surrounding the oil interests of the host country.

“We’ve known from COP number one that fossil fuels are a major cause of the problem with respect to climate change, but the reality is that it wasn’t until COP28 that the words ‘fossil fuels’ were actually recognized in the agreement,” says Woodwell Climate CEO and President, Dr. Max Holmes. “It’s really late in the game, but I think it’s important that this was finally recognized. Yet words are not actions, and much more needs to be done.”

International agreements were also made to reduce methane emissions generated by fossil fuel extraction and triple renewable energy by 2030, as well as enact the agreed-upon Loss and Damage fund created last year, which will use contributions from wealthier countries to support those suffering the worst climate-related impacts.

Progress also occurred on many smaller stages at COP28. Woodwell Climate had a strong presence, sending 16 scientists and staff to advocate on a variety of issues, including increased ambition in curbing emissions, funding for adaptation measures, action around permafrost and tropical forest issues, and improvements in transparency around carbon markets. Here are some of our key highlights and takeaways from COP28.

Protecting tropical forests

One core tenet of the Center’s research is the value of protecting and restoring natural ecosystems for both their intrinsic and climate importance. A check-in on pledges to end deforestation by 2030 shows they are mostly going unmet, but the final agreement did include language that acknowledged the importance of “protecting, conserving, and restoring forests”, which Woodwell Carbon Program Director, Dr. Wayne Walker, notes was another significant inclusion this year.

“Nature has a tremendous role to play and that’s really what this section is trying to emphasize: the importance of bringing nature to bear in the mitigation conversation alongside transitioning away from fossil fuels,” said Dr. Walker.

Woodwell Climate used this year’s COP to build and deepen partnerships that advance efforts to protect the carbon-storage powerhouses that are tropical forests. For example, Woodwell Climate hosted a discussion with Health in Harmony and Pawanka Fund about the power of  investing in Indigenous-led climate solutions. 

“Woodwell has been partnering increasingly with organizations like Health in Harmony and Pawanka fund, who are really strong advocates of Indigenous self-determination”, says Dr. Walker. “Pawanka Fund is a really great example of an Indigenous-led fund that provides direct support to Indigenous initiatives focused on promoting and protecting traditional knowledge, well-being, rights, and self-determined solutions to a whole host of issues. Organizations like [them] are critical to properly compensating Indigenous peoples for their contributions to climate change mitigation.”

Climate risk and carbon markets

On December 5, Woodwell Climate announced the release of a new report in partnership with the Ministry of the Environment and Sustainable Development (MEDD) of the Democratic Republic of Congo (DRC). The report was the culmination of a multi-year collaboration to generate a localized, customized, cost-free climate risk assessment for the country that details both challenges and solutions. 

“This report was two years in the making, and was only possible because of close collaboration between Woodwell scientists, government leaders in the DRC, and experts at the University of Kinshasa,” says Woodwell Chief of Government Relations. “Our goal was to provide an actionable risk assessment that could directly inform Congolese policymaking. We developed that, but our partnership also identified the need for increased scientific and technical capacity, as well as a new framework for carbon market regulation.” 

The assessment identified improved carbon credit integrity as a mechanism to fund climate adaptation projects in the DRC and support forest preservation as a critical natural climate solution.

“We and others think carbon markets will have tremendous potential for bringing large amounts of capital to the ground to the people into the places responsible for implementing natural climate solutions,” says Dr. Walker. “But there’s no question that right now, carbon markets are plagued with all sorts of problems. There’s a lot of work to be done if they’re to function properly, sustainably, equitably.”

Pushing for permafrost accountability

Unfortunately, neither the Arctic nor permafrost were mentioned in the COP28 final agreement and Woodwell Climate Arctic Program Director, Dr. Sue Natali, says it is crucial that changes.

“Permafrost emissions can consume about 20% of our remaining carbon budget to avoid 1.5 C, and there will be much greater emissions from permafrost if we overshoot 1.5 C,” says Dr. Natali.

Dr. Natali spoke at several events in the Woodwell Climate space as well as in the Cryosphere Pavilion during Permafrost Day. Top of mind was not only the need to incorporate permafrost emissions into global carbon budgets, but also the need for Loss and Damage funding to extend to Northern communities being displaced by thawing and eroding permafrost. Discussions around Loss and Damage funding are currently focused on supporting countries in the global south, but many Arctic communities are grappling with decisions about relocation and adaptation, and have been for decades.

“These communities who already have very limited land are losing it to permafrost thaw, wildfire, increased storm impacts. This has been going on for a really long time and they urgently need resources,” Dr. Natali said. 

Where the rubber meets the road

“These high-minded Nationally Determined Commitments are ambitious in their target setting, but the national level policy is where they become reality,” says McGlinchey. Emphasizing that we will have to wait and see how the promises made at this year’s COP are enacted by different nations. During the conference, the Woodwell Climate meeting space was visited by two US senators, Ed Markey of Massachusetts and Lisa Murkowski of Alaska, who showed interest in permafrost and other climate issues.

Looking towards COP29, which will be hosted in Azerbaijan, the hope is that ambition and national commitments will increase, because while progress was made in this year’s agreement, it was nowhere near big enough to limit warming to below 1.5 degrees celsius. With current warming at around 1.2 degrees, we will have to be swift and decisive.

“This past year was a remarkable one— the hottest on record. The impacts of climate change are here and are being felt by people here and around the world. And that adds urgency,” says Dr. Holmes.

For the full debrief of COP28, you can watch our Webinar here.

Woodwell Climate’s Dr. Sue Natali appointed to DOI adaptation science council

Woodwell Climate’s Arctic Program Senior Scientist and Permafrost Pathways Lead Dr. Sue Natali was appointed by U.S. Secretary of the Interior Deb Haaland as a member of the new federal Advisory Council for Climate Adaptation Science.

Read more on Permafrost Pathways’ website.

At COP28, Woodwell Climate Research Center and the Ministry of the Environment and Sustainable Development (MEDD) of the Democratic Republic of Congo (DRC) have jointly released a new report, From Risk to Resilience: A strategic assessment of challenges and solutions to scaling climate mitigation and adaptation in the Democratic Republic of Congo.

“This is a very important tool,” said Benjamin Toirambe, DRC Secretary-General of the Environment. “There’s a real need for this, you can’t simply be feeling your way in the dark. If today the Minister of Agriculture has a risk analysis, he can guide his decision making based on what is happening in the field.”

“It really points towards the need to make much more critical investments in basic science to support this type of model, and support more efficient policy implementation,” said Dr. Glenn Bush, Associate Scientist at Woodwell Climate Research Center. 

The report is based on a collaboration that began last year between Woodwell Climate and MEDD to generate a localized, customized, cost-free climate risk assessment. It examines a range of climate change threats to forests and agriculture in the region – including drought, heat stress, agricultural yields, extreme precipitation, flooding, and wildfire – and finds that these threats necessitate swift climate adaptation action, particularly by enhancing carbon credit integrity and scaling finance mechanisms in order to fund necessary adaptation efforts and support forest preservation as a critical natural climate solution.

“I am very pleased that the report has been adopted by both parties,” said Joseph Zambo, who facilitated the collaboration as Woodwell Climate’s focal point in the DRC. “This report comes at a good time for the DRC, as the country is engaged in several processes to combat climate change. This report will serve as a sustainable and real support to prevent climate risks and find ways to find solutions at scale.”

“The DRC’s landscapes are one of the greatest insurances against future climate risks—a natural climate solution to prevent further warming and avoid the worst harm from climate change. Carbon markets represent one of the most important and effective tools we have to protect them,” said Dr. Bush.

To support disaster risk reduction and climate change adaptation planning, the report offers policy recommendations, including: creating more stable and reliable observational networks and data records; scaling up agricultural research and extension services; improving field inventory and remote sensing monitoring systems; and building community awareness of climate impacts. Additionally, specific policy recommendations related to financing include: 

“What’s particularly interesting is the comparison we have done with the initial data provided by NDCs and compared to forecasting and models used by Woodwell,” said Professor Onesphore Mutshail Kuval of the University of Kinshasa. “This made it possible for us in DRC to propose certain types of adaptation in the context of the carbon market, based on risk assessments provided by this forecasting model. We have a whole series of proposed adaptation measures, and these were devised in conjunction with the models provided to us.”

The report was officially released during the 2023 United Nations climate change conference, or Conference of the Parties, COP28, at a panel event, The intersection between adaptation and mitigation, and implications for developing the New Climate Economy. The event was co-hosted by Woodwell Climate and the DRC, and focused on discussing the report’s findings in the context of emerging priority policy and management pathways to a green economy.

The full report can be read here.

In a busy hallway of the Dena’ina Civic and Convention Center in Anchorage, Alaska, Arctic Communications Specialist, Jess Howard, and Climate Adaptation Specialist, Brooke Woods, stand in front of a large print-out of a map of Alaska. The map was created by Greg Fiske, Senior Geospatial Analyst at Woodwell Climate, to show the topography of the state in artfully shaded greens, browns, and whites. At the moment it is covered in handwritten notes. 

Woods had suggested they bring the map to the Alaska Forum on the Environment (AFE) and invite conference attendees to add notes describing their community’s experiences with the impacts of climate change. Their table remained crowded throughout the day, as people stopped to point out the rivers and mountain ranges around where they lived, and swap stories about erosion, flooding, permafrost thaw, and missing species.

“Even on this huge map of Alaska,” says Howard. “People were coming up and immediately saying ‘there’s this river, there we are.’ Knowing exactly where to point was just so immediate because of the deep connection Alaska Native communities have to the land and water, of which they are the original stewards.”

Fiske who, alongside Cartographer Christina Shintani, leads the Center’s map-making activities, has seen many moments like this one over his decades-long career—moments where maps start conversations, foster connections, and get people thinking. It’s the reason he brings maps with him wherever he goes, and encourages others to do the same. It’s the reason he keeps a table at the Center’s offices covered in printed maps, sometimes finished pieces for display, sometimes draft versions to workshop. 

Because when the maps come out, so do the stories. And the stories help us better understand our place in the changing world.

Making maps is a method of discovery

“But Google Maps exists. Haven’t all the maps been made already?”

Fiske and Shintani have heard it before: the idea that “everything has already been mapped.” Why should we create new maps of familiar places?

In a world beset by hundreds of transformative forces, of which climate change is one, Shintani responds that cartography is just as important now, if not more important than ever.

“The world is constantly changing,” says Shintani. “If it weren’t, we wouldn’t spend billions of dollars to capture satellite imagery every minute of the day. Political boundaries change every year, glaciers disappear, wildfires break out and alter the landscape, and we have to map the physical and social phenomena to understand that changing world.”

The act of creating a map can also be a method of revealing something new from existing data, which is why cartography plays a central role in research at Woodwell Climate.

Fiske and Shintani field frequent requests from scientists for maps to accompany research papers. According to Fiske, “sometimes the data for that is readily available, but sometimes it takes an entire geospatial analysis to derive what you need to make the map. And you won’t really know until you start iterating.” Often, viewing data on a map will inspire new scientific questions for researchers to chase down. The act of creating maps is not just an end product, it can be a critical step in the scientific process.

Cartography requires a little bit of everything

In their time at the Center, Fiske and Shintani have worked on maps detailing forest carbon in the United States, global drought forecasts, fire detections in the Amazon rainforest, and Arctic communities located on permafrost ground—they are no strangers to working across disciplines.

“Cartographers are generalists,” says Shintani. “We have to know a little bit about a lot of things, which actually benefits us as climate communicators, since the maps we’re making aren’t meant to inform other expert climate scientists, they are trying to convey information to everyone else.”

“Cartography isn’t really one profession,” Fiske clarifies. “It’s a collection of professions.”

A modern cartographer, according to Fiske, is a data analyst, a statistician, a designer, a programmer, a storyteller, and an artist all rolled into one. Skills from each profession, and a healthy curiosity about a hundred other topics, are required in order to create maps that are informative, attention-grabbing, and intuitive to read. Fiske entered into cartography through the world of computer coding, discovering an affinity for programming in his high school’s computer lab. He picked up the other skills later, with guidance from mentors, learning first to apply coding to geospatial data, and then how to display that data visually, and even make it beautiful. 

Shintani’s entryway into cartography was through science. She had intended to study the physical geography of rivers, when a class on cartography changed her direction.

“With maps, I could organize everything in a way that made sense to me—because the world is so often organized in ways that don’t make sense—and I could make them beautiful,” says Shintani. “It was the first time I felt like I was really good at something.” 

Fiske and Shintani’s cartographic talents eventually brought them both to Woodwell Climate, where their knowledge of various fields has helped them solve research questions and communicate new findings to the public. 

“The day-to-day involves bringing together datasets, developing a clear story, making it look intuitive through design, taking the experts’ thoughts and data and making it a little more tangible for folks,” says Shintani.

To map something is to understand it

In another era, a cartographer might also have been somewhat of an adventurer—conducting expeditions to map hills and valleys, using mathematical conversions to capture the detailed curves of a coastline in a meticulously hand-drawn document. These days, cartography has much more to do with sitting behind a computer, manipulating massive datasets created by satellite observation and tweaking color pallets and font sizes using a variety of software. 

The proliferation of satellite data has made the process of map-making much quicker and more accessible—no longer requiring long expeditions just to gather information on topography or ground cover. It’s allowed a shortcut to understanding the shape of places you’ve never been. A shortcut, Fiske says, but not a replacement.

“I would never have been able to make that map,” says Fiske, referring to the map of Alaskan topography that Howard and Woods brought to AFE, which earned him two awards from the Esri User Conference earlier this year. “If I hadn’t been to Alaska, seen it from an airplane, looked at those mountains, and seen what it looks like between the green valleys and the white glaciers.”

Travel is something Fiske believes should remain a part of the cartographer’s toolkit whenever possible, because a thorough understanding of a place is critical to being able to map it. Things like the natural colors of the landscape at different times of year, the true scale of glaciers when you are standing beneath them, the shape of a slumping and eroding hillside, give a fuller picture of the reality on the ground.

“A good map is a close connection to reality,” says Fiske. The closer to reality a map is, the more intuitive it is to orient yourself on it, understand the information the map is trying to convey. Fiske travels regularly, joining float trips with Science on the Fly or Permafrost Pathways’ visits to field sites and Alaska Native partner communities. He plays a role in the science, helping navigate and collect data, but values the experiences more for the insights he can use to inform future maps.

“If you’ve stood on the tundra,” he says. “Then you can make a better map of the tundra.”

A place in the world

A decade ago, Fiske recalls, he was helping a colleague map her work studying chimpanzees in the Congo Rainforest. 

“We were going through and pulling coordinates out, sifting through notebooks that had obviously been sitting in the field for years, covered in water stains and mud.” They were overlaying documented nesting sites with data on forest type and at some point, Fiske turned around and realized she was in tears. 

“Seeing it formulate on the screen, she was overcome with emotions,” says Fiske. “The map reflected what she had been carrying around in her mind the whole time.” 

Maps, in Fiske’s experience, create instant—sometimes emotional—connections between people and places. They place individuals in the context of the wider world and put long-held ideas down on paper to be shared.

Which is why Fiske believes anyone can and should make maps. He has been helping the Permafrost Pathways team bring cartography into their work with Indigenous Arctic communities through a method called participatory mapping, which combines community input with technical expertise to create maps representing collective knowledge. Howard is also working with Fiske to create a digital version of his Alaskan topography map that incorporates the stories shared through the exercise at AFE. 

Looking forward, Fiske wants to push his career more and more towards helping others create maps. Because everyone has stories to share about the places they know—whether they come from generations spent living on a landscape, or one lifetime’s work spent studying a single ecosystem. 

“I want to help folks make maps,” says Fiske. “And tell their story.”

Woodwell Climate Research Scientist, Dr. Taniya RoyChowdhury, has been awarded the inaugural Christiana Figueres Prize for microbiology. The prize, part of the Applied Microbiology International Horizon Awards, recognizes scientists who have used microbiology to make a significant contribution to our understanding of terrestrial life and the preservation of our global ecosystem.

Figueres, for whom the prize is named, has been a leader in climate action for almost three decades, founding the Centre for Sustainable Development in the Americas in 1995 and serving as a negotiator of the United Nations Convention on Climate Change and the Vice President of the Bureau of the Climate Convention representing Latin America and the Caribbean. The prize seeks to honor scientists who have followed in her footsteps as climate leaders, using microbiology to help improve our understanding of climate change and solutions that could help mitigate emissions.

Dr. RoyChowdhury is a first-generation college student who grew up in urban India with a passion for nature and science. With help from her family, she was able to pursue an education in environmental studies.

Her research now focuses on how soil systems are responding to climate change at both the broad ecological scale and the complex microbial one. 

“Microbes regulate the rate at which organic carbon inputs from plants are metabolized and stabilized in the soil,” says Dr. RoyChowdhury. “The soil microbiome is also a major driver of carbon loss via greenhouse gasses. My research seeks to quantitatively understand the responses of the soil microbiome to climate change factors.” 

According to Dr. RoyChowdhury, a deeper understanding of these dynamics could help inform strategies for improving soil carbon sequestration. She has published more than 25 papers on topics like the impacts of seasonal and tidal wetland drawdowns on methane production, the impacts of drought on prairie grasslands, and the connection between land-use and management change in agroecosystems and microbial processes.

 “My goal is to realize the powerful impact that soil microbiology can have towards achieving the sustainable development goals of climate action,” says Dr. RoyChowdury. “Using a multi-dimensional approach and comprehensive understanding of diverse ecosystems, I strive to provide valuable insights into the factors influencing climate vulnerability, soil health and sustainability.”

At Woodwell Climate, Dr. RoyChowdhury is currently leading research on the soil and plant productivity impacts of organic farming in Andhra Pradesh state in southern India. She has trained local volunteers and farmers to collect and analyze soil samples on 300 farms in the region, with the hopes of quantifying how organic farming practices can be used to increase carbon and other nutrients in the soils.

“The farmer is the best scientist here because they know the soils more than we could test in the lab. They have been farming for years and years and inheriting practices over generations,” says Dr. RoyChowdhury. “So when they see the changes in the soil, they’ll know it.”

The Christiana Figueres Prize was announced November 16 at the 2023 Environmental Microbiology Lecture, held at the British Medical Association House in London.