Across seven decades and a dozen presidencies, America’s scientific prowess was arguably unmatched. At universities and federal agencies alike, researchers in the United States revolutionized weather forecasting, cured deadly diseases, and began monitoring greenhouse gas emissions. As far back as 1990, Congress directed this scientific might toward understanding climate change, after finding that human-induced global warming posed a threat to “human health, and global economic and social well-being.”
The Frontiers Planet Prize, the world’s largest science competition to enhance planetary health by fast-tracking innovative research, today announced National Champions from 19 different countries who now advance to the International competition, which will award three winners $1M each to scale up their research.
Read more on the Marine Biological Laboratory website.
The wildfire scorching southern New Jersey ignited despite a series of downpours in recent weeks — and the region is ripe for more blazes.
April’s rains didn’t soak into the ground enough to prevent the fire from erupting at the edge of New Jersey’s pine barrens reserve. The blaze — which was allegedly sparked by an improperly extinguished bonfire — has burned 21 square miles (54 square kilometers) and is expected to grow in the coming days.
Read more on Insurance Journal.
I’m a field research scientist. What does this mean? I enjoy being outside, in forests and wetlands, studying the environment up close and personal. One of my favorite places to work and explore over the course of my career has been Howland Research Forest in central Maine.
Dominated by red spruce, eastern hemlock, and red maple, this mature northern forest feels old. There is a 400 year old yellow birch that was already a mature tree during the American revolution. The ground is soft— spongy with a lot of “holes” where past trees have fallen and roots decomposed. My feet often plunge into these holes, which can sometimes be filled with water.
The Howland Forest Research station was established in 1986 by the University of Maine in partnership with a packaging and paper company, International Paper. My first trip to Howland Forest was in 1998 and at the time the research center was just a collection of trailers housing equipment. I had never seen so much mouse poop in a building.
Howland was one of the first sites ever dedicated to measuring the net exchange of carbon between a forest and the atmosphere. Its support comes from the Ameriflux Network, a grass roots, science driven network of research stations spread across North and South America that monitors the flow of carbon and water across ecosystems. In these early years, Howland forest also served as a training site for testing out NASA’s remote sensing capabilities. At one time, Howland Research Forest was the most photographed site on earth from space. Soon the well used trailers were replaced with multiple buildings to accommodate the ever expanding research. The mice were evicted.
Howland forest was selectively harvested over 100 years ago, evidenced by cut stumps, but the forest has remained intact, growing under natural conditions since then. Most trees range between 100-120 years old. In 2007, International Paper was scheduled to harvest these mature trees. Recognising the value of maintaining a continuous long-term record of observations, scientists from Woodwell Climate Research Center, The University of Maine (UMaine Orono), and the U.S. Forest Service (USFS) partnered with the Northeast Wilderness Trust (NEWT) to purchase the forest. The Howland Research forest, now owned by NEWT, was protected in a forever wild state. This science and conservation partnership saved an invaluable mature natural forest and research site. As scientists continued to collect data over the next decades, we would learn just how important this partnership was to our understanding of mature forests.
Long-term measurements of carbon exchange between the forest and the atmosphere are being taken from the top of a tower, as part of the Department of Energy (DOE) supported Ameriflux Network, and paired with measurements on the ground. It’s the measurements on the ground where I come in. Myself and collaborators at UMaine Orono, USFS and a host of other scientists and students over the decades have measured carbon exchange from soils, tracked changes in temperature and moisture, and taken tree inventories.
Mature forests contain large stores of carbon in their tree stems, foliage, roots, and within the soils, accumulated over decades of growth and decomposition. Allowing mature forests to continue to grow, untouched, is beneficial to maintaining carbon stores along with the natural biodiversity and water cycling, often collectively called “ecosystem services”.
Over the last 25 years, Howland Research Forest has seen the warmest, driest, and wettest years. Observations show an increasing trend in the net uptake of atmospheric carbon (as carbon dioxide) into this mature forest, meaning that Howland forest is continuing to take up and store more carbon each passing year.
If the forest had been harvested in 2007, observations spanning that shorter time frame would have indicated a decreasing trend in net net carbon uptake, meaning that Howland Forest was taking up less carbon each passing year.
Although Howland Forest continues to take up carbon, the overall number of live trees has been declining (17% decline since 2001 in live trees, particularly red spruce and northern white cedar) and the number of dead trees has nearly doubled since 2001. Theoretically, fewer live trees would indicate less carbon uptake, but that is not happening. The mature, large diameter trees continue to grow; although there may be fewer in number, they continue to take up significant amounts of carbon.
Tree species can differ in how they respond to environmental changes as well as how carbon is allocated within the tree and across a mature forest ecosystem. Teasing out these complex, multi-scaled, multispecies responses requires long term studies. However, given the challenges to acquiring and sustaining funding for long-term studies, it’s unusual to have this type of paired dataset like we have at the Howland Research forest. This would not have been possible without the forward-looking vision of scientists and NEWT, and the consistent support from the Ameriflux Network.
Thanks to its preserved, forever-wild status, a new generation of scientists has the opportunity to continue this work, building on our understanding of the mechanisms driving climate resilience in this mature northern forest.
The partnership between science and conservation is a victory for both. Results from the Howland Research Forest demonstrate the need to continue supporting long-term studies to fully understand how natural, mature forests respond to a changing climate. Conservation organizations and land trusts are preserving and restoring critical habitats across the U.S. and the globe. This is an opportunity to build alliances between science and conservation, to inform how natural ecosystems function and the impact of restoration efforts on the ecosystem services that we all benefit from, while preserving natural spaces for future generations.
The last decade has shattered global temperature records, with all 10 of the planet’s warmest years occurring since 2015. Under the Paris Climate Agreement, countries across the world are working to limit global warming to 1.5 degrees Celsius by decreasing their heat-trapping greenhouse gas emissions. But researchers say more action is needed to protect us from the worst impacts of climate change.
“We’re beyond the point where emission cuts alone are going to keep us within a safe climate range. We need to remove carbon from the atmosphere,” Dr. Jonathan Sanderman, carbon program director and senior scientist at Woodwell Climate Research Center, says. “And there’s really two ways of doing that: tech-based solutions, like direct air capture or other engineering-based solutions, or we could try to reverse the last several 100 years of degrading nature and pull more carbon back into the biosphere.”
While both solutions are likely needed, Sanderman and others at Woodwell Climate are focused on using the power of natural environments, such as forests, wetlands, agricultural land, and rangelands, to reduce carbon in the atmosphere. These methods, called nature-based climate solutions, help combat climate change in three major ways: decreasing greenhouse gas emissions from deforestation, capturing and storing carbon from the atmosphere, and building ecosystems more resilient to climate hazards such as flooding and wildfires, according to the International Union for Conservation of Nature (IUCN).
Natural climate solutions could contribute more than 30% of the cost-effective climate solutions needed globally in the next few decades. They could also save countries hardest hit by climate change $393 billion in 2050 and reduce climate hazards by 26%.
Sanderman researches one of Earth’s largest carbon pools: the soil. Plants release carbon they’ve absorbed from the atmosphere back into the ground when they die, which stores a total of about 2,500 gigatons of carbon globally.
“Soils hold four times as much as trees do — about three times as much as the atmosphere,” Sanderman says.
Good land management can stabilize the amount of carbon in soil, but soils across the world have degraded substantially due to cultivation and overgrazing around the turn of the century.
Storing carbon in the ground not only reduces the level of this greenhouse gas in the atmosphere, but carbon is the backbone of soil organic matter, which is a key regulator of soil health and crop yield consistency. It helps reduce erosion, keep soil structure in place and retain water. Carbon is often used as an indication of soil quality, with healthy soils usually containing about 2% organic carbon. Yet, precisely determining how much carbon is stored in soils worldwide — and which land management techniques lead to the most efficient carbon storage — is tricky.
Sanderman is working with Dr. Jennifer Watts, the Arctic program director and an associate scientist at Woodwell Climate, to understand how much carbon dioxide U.S. rangelands are helping capture. These lands have big potential for sinking carbon: Rangelands make up about 31% of land area across the U.S. and about 54% across the world. Using both field data and satellite data, Sanderman and Watts are creating models of overall rangeland health in the U.S. Using this information, they can then quantify how much carbon is gained or lost over time under different scenarios.
“We are hoping, with our integrated system, to be able to provide the ability to scan all landscapes to determine their carbon status, and then go back in time and look at the trajectories of change,” Watts explains. “And provide that information directly to the land managers so they can make really informed decisions on where they should invest conservation work. At the same time, it’s great for us, because as an output, we get to quantify how much carbon is being gained versus lost in certain places and what the climate benefits are.”
While carbon dioxide is one of the most abundant and long-lasting greenhouse gases, methane is far more efficient at trapping heat in the atmosphere. Per molecule, it’s about 80 times more harmful in the atmosphere than carbon dioxide, though it lasts an average of only a decade in the air, whereas carbon dioxide can persist for centuries. Nevertheless, reducing methane emissions by 45% by 2030 could help us reach our goal of limiting global warming to 1.5°C, per the United Nations.
Cutting anthropogenic methane emissions should be prioritized, but using nature-based solutions to increase uptake can also help bring down methane concentrations in the atmosphere. Although forests and soils play a smaller role in methane cycling, “When you start thinking about how much they can do over large areas, the numbers really get big,” Watts says. “And then it makes a huge difference.”
In northern forests across the U.S., Woodwell Climate researchers have set up methane monitoring systems, including specialized towers that measure the exchange of greenhouse gases, energy, and water between the ecosystem and the atmosphere. The team also analyzes soil samples from the forest to see exactly where methane-consuming and methane-producing microbes are thriving.
The team has discovered a unique feature of the Howland Research Forest in Maine: It is an overall methane sink — though exactly why remains unknown. But by understanding more about how and under which conditions these methane-consuming microbes live, forest managers can change their strategies to harness the creatures’ natural power to reduce the effects of climate change.
To combat the climate crisis, we must do “a lot of things simultaneously,” Watts says, including using good land management practices to capture and store greenhouse gases.
“Working with nature has a lot of advantages, because you’re optimizing the health of ecosystems, at the same time providing ecosystem services, not just for climate but also for local communities,” Watts says. “If we identify how to do this effectively, we’re really unleashing the power of something that’s already there, and then trying to work with it instead of against it.”
Facts can be awfully stubborn things. And they’re especially inconvenient for the Trump administration.
So the president and his goons are simply disappearing them, deleting vast tranches of scientific, health, and other data from federal websites.
Why bother with a debate over the facts when you can fix it so they don’t exist in the first place? It’s much easier to deem racial health disparities a myth if there’s no longer a massive reservoir of government data showing otherwise, for example. And it’s easier to suggest vaccines cause autism if you scrub the data suggesting that theory is a massive and deadly crock.
Nowhere has this approach been clearer than on climate and the environment, where, in its efforts at “Reinvigorating America’s Beautiful Clean Coal Industry,” the administration has demanded that thousands of datasets be removed from federal websites, including the State Department, the Department of Agriculture, and NASA — or hidden so the public cannot find them.
Read more on The Boston Globe.