As the Arctic heats up three to four times faster than the rest of Earth, hotter temperatures have super-charged northern fires, causing them to burn more area, more frequently, and more intensely.
These fires have a range of harmful impacts on communities, ecosystems, and wildlife in the north. When it comes to carbon, they represent a unique now-and-future threat to global climate. That’s because much of the boreal forest, which circles the high northern latitudes, is underlain by carbon-rich frozen ground called permafrost. Stocked with carbon from dead animal and plant matter that’s accumulated over hundreds to thousands of years, permafrost functions as Earth’s “deep freezer,” keeping the planet cool by keeping carbon out of the atmosphere.
When permafrost thaws, microbes begin to access and break down the once-frozen carbon, releasing it to the atmosphere where it contributes to warming. Wildfires accelerate this process by burning off the organic soil layer that protects permafrost— opening the door on the freezer. And as temperatures in the north rise and boreal forests dry out and experience greater climate stress, the fires these forests evolved with have become more frequent and severe, with consequences for both permafrost and our climate.
The boreal forest, the largest forested biome on Earth, covers large stretches of North America, Europe, and Russia and stores 25% of the planet’s terrestrial carbon. Roughly 80% of this carbon is stored belowground in the form of soil organic matter and permafrost. So when the forest burns, the carbon released from the trees is just the tip of the iceberg. Eighty percent or more of carbon emissions from boreal fires in North America and in central Siberia come from belowground combustion of soil organic matter.
Boreal forests have been reliable safekeepers of this belowground carbon historically by providing an insulating soil organic layer that protects permafrost. But increasingly severe fires are changing that picture.
Wildfires threaten this belowground carbon in boreal forests in multiple ways, both during and long after the fire itself.
As a fire burns, it combusts the carbon stored in trees and plants, releasing it into the atmosphere along with smoke and harmful pollutants. Intense fires also burn through duff and soil layers that carpet the forest floor.
Burning these insulating layers exposes the permafrost below to warmer temperatures for years after a fire. A recent synthesis study led by Postdoctoral Researcher Dr. Anna Talucci of Woodwell Climate found that in burned sites across the boreal and tundra regions, the depth of seasonally thawed ground increased for two decades after a fire.
That means that long after a fire is extinguished, permafrost is still thawing and releasing carbon in the form of carbon dioxide and methane. Where this ground is rich in ice, it can sink and collapse after a fire, causing ponding, erosion, and creating bogs and wetlands that release methane.
All of this carbon released to the atmosphere contributes to further warming, which in turn contributes to drying forests, hotter temperatures, and more lightning ignitions in the boreal forests. That’s because warming has boosted both lightning ignition efficiency, or the likelihood that lightning starts a fire, and the number of lightning strikes in the region.
Average yearly burned area across Alaska and Canada has roughly doubled since the 1960s. Emissions from Canada’s 2023 fire season exceeded total fossil fuel emissions from every other nation except the U.S., China, and India for that year. And the frequency of extreme wildfires across the circumpolar boreal region increased seven-fold from 2003 to 2023.
These trends, amplified by the permafrost-fire feedback, worsen both Arctic impacts and global emissions and could hamper our ability to meet agreed-on climate goals.
Wildfires in boreal forests are already weakening the region’s carbon storage capacity, signalling a crucial shift in the global climate system. Addressing critical gaps in our understanding of the fire-permafrost feedback will help prepare for such shifts and their local and global implications.
Research teams including Permafrost Pathways and collaborators are refining tools to predict what increasing fires mean for regional and global carbon emissions and climate targets. Such insights are needed to inform the Intergovernmental Panel on Climate Change’s (IPCC) inventory of global emissions, which does not yet include fire emissions or fire-caused permafrost thaw emissions. Efforts to better model and predict the complex interactions between permafrost and fire are also critical to informing adaptation and management responses.
The region’s vastness, as well as geopolitical conditions, presents challenges to collecting field data. Here, modeling can help scale the insights from what field data is available. And developing more accurate fire maps in Alaska and Siberia, where less burned area satellite data exists, could equip researchers and communities with better near-real-time information. Long-term monitoring efforts that study pre- and post-fire conditions, such as those led by Łı́ı́dlı̨ı̨ Kų́ę́ First Nation at the Scotty Creek Research Station, are providing critical insights about fire’s acute and long-term effects on permafrost.
The impacts from widespread severe northern wildfires transcend boundaries, affecting health and ways of life for communities living in the Arctic and around the globe.
But there are solutions at hand. Cultural burning, an important practice for many Arctic Indigenous communities, can help boreal forests build resilience by removing fuels with low-intensity seasonal fire. And collaborative management approaches that suppress fires in permafrost regions have been shown to be a cost-effective climate mitigation tool that has co-benefits for human health and the global climate.
But the most important solution to help keep the global wildfire-permafrost feedback loop in check is to reduce greenhouse gas emissions. Lowering overall emissions will slow rising temperatures in the north and give communities, boreal forests, and other ecosystems a better chance to recover and to adapt.
Each year at the Mountainfilm documentary film festival a mural is erected on a coffee shop in downtown Telluride, Colorado— a mountain mining town turned world-class winter sports destination. The festival showcases films with thought-provoking themes including environmental justice, Indigenous sovereignty, racial equity, and our collective responsibility to care for the natural world. These murals carry those themes year-round, becoming an integral part of Telluride’s main avenue and vibrant art culture. Past murals have been commissioned from artists including Shepard Fairey and Banksy.
This year, Woodwell’s lead cartographer Greg Fiske was selected to display his maps as art for the mural wall. The resulting piece, “Cartographies of Arctic Change”, will remain in place until next spring, and shows the rapidly changing Arctic landscape as seen by Fiske during the process of turning satellite imagery into data used by the Center’s climate scientists. Here, Fiske talks about his process and thinking behind the creation of this mural:
SR: How did this opportunity come about?
GF: It kind of came out of nowhere. I certainly wasn’t expecting it when they said, “we think your stuff would look great on this wall. What do you think?” And I said sure!
Of course, I’ve never created a map this size (26.5 by 36 feet), so I was eager to experiment. We had to go back and forth about which of the maps would best suit the space, yet also tell a story that leads viewers to our science here at Woodwell.
SR: How did you decide on the final image?
GF: I was told that whatever you put on the wall tends to influence the feeling that you get while you’re sitting there, having your coffee. [The shop owners] said that they made a mistake one year putting up an image of something cold like an iceberg, and it kind of made the whole place feel cold and dreary. So when we selected the maps, we had to make sure that they didn’t make people feel awkward while sitting there enjoying the outdoor space.
We came up with the idea of multiple maps in strips instead of one big map to be able to have each map show something different, but could all have a single theme and tell a story.
SR: What is that story?
GF: “Cartographies of Arctic Change”— it’s what we look at on a regular basis within our geospatial analyses, modeling, and science here at Woodwell that indicates rapid change in the Arctic.
Each one of these slices in the mural, in addition to being beautiful art, are also actually the data that goes into the models that drive Woodwell’s Arctic science.
The Arctic is one of the fastest changing landscapes on the planet— melting ice, thawing ground, lakes forming or draining, less snow and more fires— and you get a unique view of those changes when you spend so much time looking at geospatial data and satellite imagery.
I’m one of the people who pull in this raw data and prepare it for others who may be creating models or mapping some element of a landscape. I look at this data and make sure it’s the right format, quality, and resolution to satisfy the needs of models, but in doing so, there are many cases where I’m like, “Wow, this is really beautiful. Other folks should see the data at this stage, instead of just the final product.” So some of those images are what ended up in the mural. I hope it can give the many viewers who will see it a new perspective on the impacts climate change is having on one of the most beautiful regions of the world.
SR: What does it mean to you to have been selected to showcase that beauty through this mural?
GF: Of course it’s an honor. It’s interesting to think about something that I’ve seen so many times at screen size or social media size now being amplified to building size. I’m super thankful to the folks at Mountainfilm and Telco for displaying our work. I’ve never seen any of my maps in mural format and I won’t actually know how it’ll look until I get to Telluride and see it in person. I’m super excited!
In the Arctic, permafrost plays a crucial role in building infrastructure. However, as the region warms and permafrost thaws, infrastructure is threatened as the ground shifts beneath the built environment. Unfortunately, the full extent of the risks associated with this process is not yet realized, but researchers are working to address this knowledge gap.
Woodwell Climate Associate Scientist, Dr. Anna Liljedahl, along with UConn Department of Natural Resources and the Environment researchers Elias Manos and Assistant Professor Dr. Chandi Witharana developed a method that uses high-resolution satellite imagery and deep machine learning to map Alaskan infrastructure and more accurately project economic risks associated with permafrost thaw. Their findings published in Nature Communications Earth and Environment estimated that the costs of permafrost damage to infrastructure will double under low and medium emissions scenarios by 2050.
“Damages to infrastructure caused by permafrost thaw is on par with the average yearly cost of all natural disasters in the country, yet permafrost thaw is not recognized by the federal government as a natural hazard making it harder for people in Alaska to obtain disaster relief funding,” says Liljedahl.
This study is the latest from Witharana’s research group, which examines the ways satellites can help monitor changes in the Arctic landscape over time. According to Manos, in order to understand the hazards of a changing climate, we need a clear understanding of what’s at risk—in this case, vital structures like buildings and roads.
Permafrost serves as a structural foundation; piles are secured through it and buildings are often designed specifically to help the thermal integrity of this anchor layer. But the structural integrity of the layer, and consequently the structures above, is compromised as the permafrost thaws.
“When the temperature of permafrost starts to increase, piles start to shift out of place, and that’s what we call bearing capacity loss, or decrease in bearing capacity. That was the main hazard that we looked at which impacts buildings,” says Manos. “Then there’s also transportation infrastructure that’s primarily impacted by ground subsidence. When ice-rich permafrost thaws, the ground will cave in and that was the hazard we used to assess the disaster risk for roads.”
Previous studies have made risk estimates based on data from OpenStreetMap (OSM), which is one of the most widely used geospatial data sets available, says Manos. OSM is available for every nation across the globe, and information is updated by volunteers who manually input local data, like buildings, trails, roads, or other kinds of infrastructure, from high-resolution imagery on a global scale. For some regions, like Europe and parts of the United States, the data is accurate, says Manos, but that is not true for all locations. Unfortunately for the Arctic, OSM data is lacking.
“There are several previous risk studies that relied on this incomplete infrastructure data. It all goes back to the fact that infrastructure across the Arctic is not completely mapped, and that’s problematic if you want to understand disasters because you must have the full picture to understand the scale of what is or could potentially be exposed,” says Manos.
To fill in that picture, Witharana’s group developed a method to accurately map infrastructure and permafrost thaw risk called High-resolution Arctic Built Infrastructure and Terrain Analysis Tool (HABITAT). The model uses machine learning and AI to extract road and building information from high-resolution satellite images from the years 2018-2023. They compared the HABITAT data with OSM data to evaluate the new model’s quality and to look for potential misclassifications. Then they added the new information to OSM, nearly doubling the amount of information available for Alaska.
“The sheer amount of infrastructure and buildings that were missing from Open Street Map was, really shocking to me, 47% missing,” says Manos. “Though OpenStreetMap is a powerful volunteer-based resource, it has limitations and that is not a surprise.”
Witharana adds that by combining OSM data with the thousands of sub-meter resolution satellite images provided by the National Science Foundation, along with access to NSF supercomputing infrastructure, it was possible for the researchers to enhance the completeness of these datasets.
“We can see that impact and do better assessments of economic disturbances and risk so we can prepare for whatever policy actions or downstream efforts that are needed,” says Witharana “That’s a major outcome. Overall, the integration of AI and big data sets within our application has helped make useful, actionable products that researchers and communities can use right now.”
Witharana, Liljedahl, and Manos have plans to expand this analysis to account for the entire Arctic region to assess economic losses using a comprehensive infrastructure map.
“Alaska is decades behind the rest of the country in terms of geospatial data readiness. Maps are key for assessments and planning and I think the research community can help with some of that,” says Liljedahl.
Ecological warning lights have blinked on across the Arctic over the last 40 years, according to new research, and many of the fastest-changing areas are clustered in Siberia, the Canadian Northwest Territories, and Alaska. The analysis of the rapidly warming Arctic-boreal region, published in Geophysical Research Letters this week, provides a zoomed-in picture of ecosystems experiencing some of the fastest and most extreme climate changes on Earth.
Many of the most climate-stressed areas featured permafrost, or ground that stays frozen year-round, and experienced both severe warming and drying in recent decades.
To identify these “hotspots,” a team of researchers from Woodwell Climate Research Center, the University of Oslo, the University of Montana, the Environmental Systems Research Institute (Esri), and the University of Lleida used more than 30 years of geospatial data and long-term temperature records to assess indicators of ecosystem vulnerability in three categories: temperature, moisture, and vegetation.
Building on assessments like the NOAA Arctic Report Card, the research team went beyond evaluating isolated metrics of change and looked at multiple variables at once to create a more complete, integrated picture of climate and ecosystem changes in the region.
“Climate warming has put a great deal of stress on ecosystems in the high latitudes, but the stress looks very different from place to place and we wanted to quantify those differences,” said Dr. Jennifer Watts, Arctic program director at Woodwell Climate and lead author of the study. “Detecting hotspots at the local and regional level helps us not only to build a more precise picture of how Arctic warming is affecting ecosystems, but to identify places where we really need to focus future monitoring efforts and management resources.”
The team used spatial statistics to detect “neighborhoods,” or regions of particularly high levels of change during the past decade.
“This study is exactly why we have developed these kinds of spatial statistic tools in our technology. We are so proud to be working closely with Woodwell Climate on identifying and publishing these kinds of vulnerability hotspots that require effective and immediate climate adaptation action and long-term policy,” said Dr. Dawn Wright, chief scientist at Esri. “This is essentially what we mean by the ‘Science of Where.’”
The findings paint a complex and concerning picture.
The most substantial land warming between 1997-2020 occurred in the far eastern Siberian tundra and throughout central Siberia. Approximately 99% of the Eurasian tundra region experienced significant warming, compared to 72% of Eurasian boreal forests. While some hotspots in Siberia and the Northwest Territories of Canada grew drier, the researchers detected increased surface water and flooding in parts of North America, including Alaska’s Yukon-Kuskokwim Delta and central Canada. These increases in water on the landscape over time are likely a sign of thawing permafrost.
Among the 20 most vulnerable places the researchers identified, all contained permafrost.
“The Arctic and boreal regions are made up of diverse ecosystems, and this study reveals some of the complex ways they are responding to climate warming,” said Dr. Sue Natali, lead of the Permafrost Pathways project at Woodwell Climate and co-author of the study. “However, permafrost was a common denominator—the most climate-stressed regions all contained permafrost, which is vulnerable to thaw as temperatures rise. That’s a really concerning signal.”
For land managers and other decisionmakers, local and regional hotspot mapping like this can serve as a more useful monitoring tool than region-wide averages. Take, for instance, the example of Covid-19 tracking data: maps of county-by-county wastewater data tend to be more helpful tools to guide decision making than national averages, since rates of disease prevalence and transmission can vary widely among communities at a given moment in time. So, too, with climate trends: local data and trend detection can support management and adaptation approaches that account for unique and shifting conditions on the ground.
The significant changes the team detected in the Siberian boreal forest region should serve as a wakeup call, said Watts. “These forested regions, which have been helping take up and store carbon dioxide, are now showing major climate stresses and increasing risk of fire. We need to work as a global community to protect these important and vulnerable boreal ecosystems, while also reining in fossil fuel emissions.”
Explore these 15 maps by award-winning Woodwell Climate cartographers Greg Fiske and Christina Shintani. Created in 2024, each tells a story about the immense beauty of the high north, the dramatic changes unfolding as the Arctic continues to warm three to four times faster than the rest of the world, and the equitable solutions being developed to address climate impacts in the region
Read More on Permafrost Pathways.
A chapter of the National Oceanic and Atmospheric Administration’s (NOAA) 2024 Arctic Report Card, published today, presents a new, comprehensive pan-Arctic carbon assessment that, when accounting for wildfire emissions, finds that the Arctic tundra has shifted from storing carbon to being a source of carbon emissions to the atmosphere.
While the Arctic has been a carbon “sink” for thousands of years—storing more carbon than it releases—the Arctic Report Card chapter, Arctic Terrestrial Carbon Cycling, explores how rapid Arctic warming is prompting a range of ecosystem changes that are leading to increased emissions throughout the region. Among these are thawing permafrost (perennially frozen ground), wildfires, and plant and microbial changes.
In particular, the assessment, led by scientists at Woodwell Climate Research Center, finds that 2024 marked the second-warmest average yearly permafrost temperatures on record for Alaska, and the second-highest year for wildfire emissions north of the Arctic Circle.
“The Arctic is warming up to four times the global rate, and we need accurate, holistic, and comprehensive knowledge of how climate changes will affect the amount of carbon the Arctic is taking up and storing, and how much it’s releasing back into the atmosphere, in order to effectively address this crisis,” said Dr. Sue Natali, Woodwell Climate scientist, chapter lead and lead of Woodwell Climate’s Permafrost Pathways project. “This report represents a critical step toward quantifying these emissions at scale which is critical for understanding their impacts on global climate and informing equitable mitigation and adaptation strategies.”
“In recent years, we’ve seen how increasing fire activity from climate change threatens both communities and the carbon stored in permafrost, but now we’re beginning to be able to measure the cumulative impact to the atmosphere, and it’s significant,” said Dr. Brendan Rogers, Woodwell Climate scientist, chapter co-author, and co-lead of Woodwell Climate’s Permafrost Pathways project.
“This year’s report demonstrates the urgent need for adaptation as climate conditions quickly change,” said Twila Moon, lead editor of the 2024 Arctic Report Card and deputy lead scientist at the National Snow and Ice Data Center. “Indigenous Knowledge and community-led research programs can inform successful responses to rapid Arctic changes.”
Contributions to the chapter were also made by Woodwell Climate scientists, Dr. Kyle Arndt, Dr. Jacqueline Hung, Greg Fiske, Stefano Potter, and Dr. Anna Virkkala, as well as collaborators at University of Alaska-Fairbanks, Northern Arizona University, and Université de Montréal.
The Arctic Report Card combines the best available research from over 97 scientists from 11 countries, including seven from Woodwell Climate. Its chapters reveal record-setting observations of a rapidly warming Arctic, including rising air temperatures, declines of large inland caribou herds, and increasing precipitation. These climate impacts and others threaten the health, subsistence, and homes of many Indigenous communities living in the Arctic.
The full Arctic Report Card can be read here.
“What if you’re not on the map?”
Dr. Kelsey Leonard of the Shinnecock Indian Nation addressed this question to a room of Geographic Information System (GIS) professionals at Esri’s global mapping conference in 2023. Leonard, who uses maps to advance Indigenous water justice, asks this question to raise awareness about the absence of Indigenous land and languages in GIS tools. The removal of traditional place names in physical spaces, cartographic maps, and geospatial software often contributes to the erasure of Indigenous culture and history.
The Permafrost Pathways project, like Leonard, is working to change that.
Read more on Permafrost Pathways
A new study, published in Nature Communications Earth and Environment and co-authored by researchers at Atmospheric and Environmental Research, Inc. (AER) and Woodwell Climate Research Center, finds that abnormally warm temperatures in the Arctic are associated with a higher likelihood of severe winter weather including cold-air outbreaks and heavy snowfall in Northern Hemisphere continents.
“When the Arctic atmosphere is warmer than normal, we see a much higher likelihood of extreme winter weather across much of Canada, the northern U.S. and northern Eurasia,” remarked lead author, Dr. Judah Cohen at AER. “The relationship is especially strong in the northeastern sections of the continents.”
“Even though we’re seeing cold records being broken less often as the globe warms, we’ll still see debilitating spells of severe winter weather,” added co-author Dr. Jennifer Francis at Woodwell Climate. “There will be plenty of ice, snow, and frigid air in the Arctic winter for decades to come, and that cold can be displaced southward into heavily populated regions during Arctic heat waves.”
Recent disruptive extreme winter weather events—such as the deadly Texas cold spell of February 2021—have occurred and will continue to occur in the future, wreaking havoc on infrastructure, human wellbeing, and ecosystems, especially in areas unaccustomed to and ill-equipped for dealing with winter extremes.
“The Arctic may seem irrelevant and far away to most folks, but our findings say the profound changes there are affecting billions of people around the Northern Hemisphere,” added Dr. Francis. To reverse these trends, “it will take bold and rapid actions to reduce our burning of fossil fuels and the build-up of heat-trapping gasses in the atmosphere, but the tools exist if we can muster the will.”
According to Francis, recent studies have theorized that rapid Arctic warming, a pace three-to-four times faster than the globe as a whole, may increase the likelihood of extreme weather events owing to a reduced north/south temperature difference. In addition, slower westerly winds of the jet stream lead to more frequent convoluted jet-stream configurations, which lead to unusual weather.
“Disruptions in the typically stable stratospheric polar vortex may also occur more often in a warming climate,” noted Cohen, “and we know hazardous winter weather is more likely during these disruptions.”