Fund for Climate Solutions awards five new grants

From the Arctic to the Tropics, the 2024 winter cohort of FCS projects fills information gaps to produce actionable insights

Quantifying large greenhouse gas emissions from a retrogressive thaw slump in Alaska

Lead: Jennifer Watts
Collaborators: Kyle Arndt, Patrick Murphy

Retrogressive thaw slumps (RTS) are extreme permafrost thaw landscape features, which occur when a section of ice-rich permafrost becomes warm enough to cause the ground ice to melt and soils to collapse. Once they start, RTS continue to expand and destroy nearby permafrost for months to years. Many RTS have been identified, but because they are often in extremely remote arctic locations, very little is known about the potentially substantial carbon emissions from RTS in the form of carbon dioxide and methane. This study will provide the first continuous measurements of carbon emissions from a RTS, collected over at least a year via an eddy covariance tower. The research is also supported by an equipment loan provided through the U.S. Department of Energy AmeriFlux Rapid Response program, which recognized this project as a valuable opportunity to advance science. The data collected will also serve as a “proof of concept” for a subsequent $1.3M proposal to the National Science Foundation for continued research at the site.

Assessing the impacts of ecosystem disturbance on carbon emissions from Arctic and Amazon ponds

Lead: Elchin Jafarov
Collaborators: Zoë Dietrich, Andrew Mullen, Jackie Hung, Marcia Macedo, Kathleen Savage

Freshwater ecosystems are significant sources of the greenhouse gases that persist in the atmosphere and contribute to warming. However, research is lacking an understanding of how disturbances like wildfire and agriculture can change these emissions. This project will address these information gaps by collecting measurements of carbon emissions from ponds, using autonomous floating chambers developed with funding from a previous FCS grant. With this new high-resolution data, the team will unlock the ability to predict year-round greenhouse gas emissions from ponds in the Arctic and the Amazon. Floating chambers will be deployed in ponds in Alaska affected by wildfires, and in agricultural reservoirs in the Amazon-Cerrado frontier. In both locations, the ability to take more frequent measurements of carbon emissions will help researchers improve models and better assess the ponds’ impacts on regional carbon budgets.

The Polaris Project: Data synthesis from almost two decades of research and student participation

Lead: Nigel Golden
Collaborator: Sue Natali

Established in 2008, the Polaris Project has earned global recognition for its leadership in Arctic research, education, and outreach. Through the commitment to providing students with hands-on experience, Polaris has enabled numerous publications and presentations. Polaris is approaching a critical juncture in the next funding cycle, and this project will complete the first-ever comprehensive synthesis of Polaris Project research to help sustain Woodwell Climate’s sole undergraduate research program. By consolidating past research and educational achievements, the team will create a data synthesis paper to be submitted to a peer-reviewed, open-access scientific research journal, as well as a retrospective analysis of undergraduates’ research experiences with Polaris to be submitted to an education research journal. The team will also launch an online communications piece that documents past Polaris participants’ field experiences and unique journeys with a variety of narrative and artistic communications styles and elements.

Determining the climate sensitivity of coastal rivers to guide ecosystem restoration across SE Massachusetts

Lead: Abra Atwood
Collaborators: Marcia Macedo, Chris Neill, Linda Deegan, Scott Zolkos

Coastal rivers, like those that flow into Massachusetts’ Buzzards Bay and Vineyard Sound, are fragile environments that serve critical ecological functions for native fish, downstream estuaries, and coastal wetlands. Different rivers are uniquely sensitive to changes in air temperature based on a variety of characteristics, such as their water source or shade. However, land use changes, including housing development and cranberry bogs, have affected key river characteristics and stream temperatures. This project will investigate MA coastal rivers’ sensitivity to changing air temperature, as well as how that sensitivity is affected by both connection to groundwater and the creation or restoration of cranberry bogs. The temperature sensors and geochemical analyses used in this research may be scalable beyond these rivers and yield insights to inform research approaches relevant to rivers around the world.

A drought early warning system for the DRC: Developing a seasonal forecast based on novel machine learning approaches

Lead: Carlos Dobler-Morales
Collaborators: Christopher Schwalm, Glenn Bush

Seasonal weather forecasts hold immense potential to improve risk management from agricultural failure, water stress, and extreme events. However, significant advances in technical forecasting capabilities remain largely unavailable to communities without the resources to develop or customize them for their region. In 2023, Woodwell Climate Just Access co-produced a national climate risk assessment with the Democratic Republic of Congo’s Ministry of Environment and Sustainable Development. That report identified drought as a major climate threat to the DRC—one which stands to affect almost the entire country. In response, this project will develop a seasonal drought forecasting model tailored to the DRC using cutting-edge machine-learning methods. The forecast will be able to deliver precise rainfall anomaly predictions up to six months in advance for the whole country, and serve as an early warning system to help local people and decision-makers anticipate the impacts of escalating drought risk.


Learn more about the Fund for Climate Solutions.

At COP28, Woodwell Climate Research Center and the Ministry of the Environment and Sustainable Development (MEDD) of the Democratic Republic of Congo (DRC) have jointly released a new report, From Risk to Resilience: A strategic assessment of challenges and solutions to scaling climate mitigation and adaptation in the Democratic Republic of Congo.

“This is a very important tool,” said Benjamin Toirambe, DRC Secretary-General of the Environment. “There’s a real need for this, you can’t simply be feeling your way in the dark. If today the Minister of Agriculture has a risk analysis, he can guide his decision making based on what is happening in the field.”

“It really points towards the need to make much more critical investments in basic science to support this type of model, and support more efficient policy implementation,” said Dr. Glenn Bush, Associate Scientist at Woodwell Climate Research Center. 

The report is based on a collaboration that began last year between Woodwell Climate and MEDD to generate a localized, customized, cost-free climate risk assessment. It examines a range of climate change threats to forests and agriculture in the region – including drought, heat stress, agricultural yields, extreme precipitation, flooding, and wildfire – and finds that these threats necessitate swift climate adaptation action, particularly by enhancing carbon credit integrity and scaling finance mechanisms in order to fund necessary adaptation efforts and support forest preservation as a critical natural climate solution.

“I am very pleased that the report has been adopted by both parties,” said Joseph Zambo, who facilitated the collaboration as Woodwell Climate’s focal point in the DRC. “This report comes at a good time for the DRC, as the country is engaged in several processes to combat climate change. This report will serve as a sustainable and real support to prevent climate risks and find ways to find solutions at scale.”

“The DRC’s landscapes are one of the greatest insurances against future climate risks—a natural climate solution to prevent further warming and avoid the worst harm from climate change. Carbon markets represent one of the most important and effective tools we have to protect them,” said Dr. Bush.

To support disaster risk reduction and climate change adaptation planning, the report offers policy recommendations, including: creating more stable and reliable observational networks and data records; scaling up agricultural research and extension services; improving field inventory and remote sensing monitoring systems; and building community awareness of climate impacts. Additionally, specific policy recommendations related to financing include: 

“What’s particularly interesting is the comparison we have done with the initial data provided by NDCs and compared to forecasting and models used by Woodwell,” said Professor Onesphore Mutshail Kuval of the University of Kinshasa. “This made it possible for us in DRC to propose certain types of adaptation in the context of the carbon market, based on risk assessments provided by this forecasting model. We have a whole series of proposed adaptation measures, and these were devised in conjunction with the models provided to us.”

The report was officially released during the 2023 United Nations climate change conference, or Conference of the Parties, COP28, at a panel event, The intersection between adaptation and mitigation, and implications for developing the New Climate Economy. The event was co-hosted by Woodwell Climate and the DRC, and focused on discussing the report’s findings in the context of emerging priority policy and management pathways to a green economy.

The full report can be read here.