After millennia as a carbon deep-freezer for the planet, regional hotspots and increasingly frequent wildfires in the northern latitudes have nearly canceled out that critical storage capacity in the permafrost region, according to a new study published in Nature Climate Change.
Read more on Permafrost Pathways.
Ecological warning lights have blinked on across the Arctic over the last 40 years, according to new research, and many of the fastest-changing areas are clustered in Siberia, the Canadian Northwest Territories, and Alaska. The analysis of the rapidly warming Arctic-boreal region, published in Geophysical Research Letters this week, provides a zoomed-in picture of ecosystems experiencing some of the fastest and most extreme climate changes on Earth.
Many of the most climate-stressed areas featured permafrost, or ground that stays frozen year-round, and experienced both severe warming and drying in recent decades.
To identify these “hotspots,” a team of researchers from Woodwell Climate Research Center, the University of Oslo, the University of Montana, the Environmental Systems Research Institute (Esri), and the University of Lleida used more than 30 years of geospatial data and long-term temperature records to assess indicators of ecosystem vulnerability in three categories: temperature, moisture, and vegetation.
Building on assessments like the NOAA Arctic Report Card, the research team went beyond evaluating isolated metrics of change and looked at multiple variables at once to create a more complete, integrated picture of climate and ecosystem changes in the region.
“Climate warming has put a great deal of stress on ecosystems in the high latitudes, but the stress looks very different from place to place and we wanted to quantify those differences,” said Dr. Jennifer Watts, Arctic program director at Woodwell Climate and lead author of the study. “Detecting hotspots at the local and regional level helps us not only to build a more precise picture of how Arctic warming is affecting ecosystems, but to identify places where we really need to focus future monitoring efforts and management resources.”
The team used spatial statistics to detect “neighborhoods,” or regions of particularly high levels of change during the past decade.
“This study is exactly why we have developed these kinds of spatial statistic tools in our technology. We are so proud to be working closely with Woodwell Climate on identifying and publishing these kinds of vulnerability hotspots that require effective and immediate climate adaptation action and long-term policy,” said Dr. Dawn Wright, chief scientist at Esri. “This is essentially what we mean by the ‘Science of Where.’”
The findings paint a complex and concerning picture.
The most substantial land warming between 1997-2020 occurred in the far eastern Siberian tundra and throughout central Siberia. Approximately 99% of the Eurasian tundra region experienced significant warming, compared to 72% of Eurasian boreal forests. While some hotspots in Siberia and the Northwest Territories of Canada grew drier, the researchers detected increased surface water and flooding in parts of North America, including Alaska’s Yukon-Kuskokwim Delta and central Canada. These increases in water on the landscape over time are likely a sign of thawing permafrost.
Among the 20 most vulnerable places the researchers identified, all contained permafrost.
“The Arctic and boreal regions are made up of diverse ecosystems, and this study reveals some of the complex ways they are responding to climate warming,” said Dr. Sue Natali, lead of the Permafrost Pathways project at Woodwell Climate and co-author of the study. “However, permafrost was a common denominator—the most climate-stressed regions all contained permafrost, which is vulnerable to thaw as temperatures rise. That’s a really concerning signal.”
For land managers and other decisionmakers, local and regional hotspot mapping like this can serve as a more useful monitoring tool than region-wide averages. Take, for instance, the example of Covid-19 tracking data: maps of county-by-county wastewater data tend to be more helpful tools to guide decision making than national averages, since rates of disease prevalence and transmission can vary widely among communities at a given moment in time. So, too, with climate trends: local data and trend detection can support management and adaptation approaches that account for unique and shifting conditions on the ground.
The significant changes the team detected in the Siberian boreal forest region should serve as a wakeup call, said Watts. “These forested regions, which have been helping take up and store carbon dioxide, are now showing major climate stresses and increasing risk of fire. We need to work as a global community to protect these important and vulnerable boreal ecosystems, while also reining in fossil fuel emissions.”
Explore these 15 maps by award-winning Woodwell Climate cartographers Greg Fiske and Christina Shintani. Created in 2024, each tells a story about the immense beauty of the high north, the dramatic changes unfolding as the Arctic continues to warm three to four times faster than the rest of the world, and the equitable solutions being developed to address climate impacts in the region
Read More on Permafrost Pathways.
A new study, published in Environmental Research: Climate and co-authored by Senior Scientist Dr. Jen Francis at Woodwell Climate Research Center, finds that despite abnormal warmth globally, and especially in the Arctic, severe winter cold-air outbreaks will continue, and perhaps become more frequent across the Northern Hemisphere.
“Even though the globe is warming and cold records are falling less often, we are still seeing surprisingly severe cold spells that sometimes last for many days and invade regions unaccustomed to severe cold,” said Dr. Francis. “It seems really counterintuitive, but there will be plenty of ice, snow, and frigid air in the Arctic winter for decades to come, and that cold can be displaced southward into heavily populated regions by Arctic heat waves.”
“In this comprehensive review of recent literature augmented with new analysis, we find the ongoing warming of the Arctic may provide an explanation,” added study lead-author Dr. Edward Hanna.
The stratospheric polar vortex is a mass of cold whirling air that forms high above the Arctic surface in response to the large north/south temperature difference that develops during winter. During recent warm winters with a relatively warmer Arctic, however, this vortex has tended to weaken, which can disrupt the normal flow of the jet stream below it (a river of wind above northern midlatitudes) and lead to conditions called ‘blocking’, which in turn allow pockets of cold Arctic air to plunge much farther south than normal.
This review provides a new analysis of recent research that offers further clarity around these complicated interactions. According to study co-author Dr. Muyin Wang, “An improved understanding of Arctic-midlatitude climate linkages is likely to benefit seasonal prediction and extreme weather preparedness, as well as the understanding of climate change.”
Researchers also underscore the need for urgent action to address the climate crisis, and mitigate and adapt to the consequences of increasingly extreme weather. “The Arctic may seem irrelevant and far away to most folks, but our findings show that the profound changes there affect billions of people around the Northern Hemisphere,” said Dr. Francis. “To reverse these trends, and better protect our communities and our planet, we must take bold and rapid action now to reduce the burning of fossil fuels and the build-up of heat-trapping gases in the atmosphere. The tools to achieve this exist if we can muster the will.”
The study resulted from an international workshop held in Lincoln, UK, in 2023, and was supported by the International Arctic Science Committee, the World Climate Research Programme’s Climate & Cryosphere project and the University of Lincoln. The full text can be read here.
A chapter of the National Oceanic and Atmospheric Administration’s (NOAA) 2024 Arctic Report Card, published today, presents a new, comprehensive pan-Arctic carbon assessment that, when accounting for wildfire emissions, finds that the Arctic tundra has shifted from storing carbon to being a source of carbon emissions to the atmosphere.
While the Arctic has been a carbon “sink” for thousands of years—storing more carbon than it releases—the Arctic Report Card chapter, Arctic Terrestrial Carbon Cycling, explores how rapid Arctic warming is prompting a range of ecosystem changes that are leading to increased emissions throughout the region. Among these are thawing permafrost (perennially frozen ground), wildfires, and plant and microbial changes.
In particular, the assessment, led by scientists at Woodwell Climate Research Center, finds that 2024 marked the second-warmest average yearly permafrost temperatures on record for Alaska, and the second-highest year for wildfire emissions north of the Arctic Circle.
“The Arctic is warming up to four times the global rate, and we need accurate, holistic, and comprehensive knowledge of how climate changes will affect the amount of carbon the Arctic is taking up and storing, and how much it’s releasing back into the atmosphere, in order to effectively address this crisis,” said Dr. Sue Natali, Woodwell Climate scientist, chapter lead and lead of Woodwell Climate’s Permafrost Pathways project. “This report represents a critical step toward quantifying these emissions at scale which is critical for understanding their impacts on global climate and informing equitable mitigation and adaptation strategies.”
“In recent years, we’ve seen how increasing fire activity from climate change threatens both communities and the carbon stored in permafrost, but now we’re beginning to be able to measure the cumulative impact to the atmosphere, and it’s significant,” said Dr. Brendan Rogers, Woodwell Climate scientist, chapter co-author, and co-lead of Woodwell Climate’s Permafrost Pathways project.
“This year’s report demonstrates the urgent need for adaptation as climate conditions quickly change,” said Twila Moon, lead editor of the 2024 Arctic Report Card and deputy lead scientist at the National Snow and Ice Data Center. “Indigenous Knowledge and community-led research programs can inform successful responses to rapid Arctic changes.”
Contributions to the chapter were also made by Woodwell Climate scientists, Dr. Kyle Arndt, Dr. Jacqueline Hung, Greg Fiske, Stefano Potter, and Dr. Anna Virkkala, as well as collaborators at University of Alaska-Fairbanks, Northern Arizona University, and Université de Montréal.
The Arctic Report Card combines the best available research from over 97 scientists from 11 countries, including seven from Woodwell Climate. Its chapters reveal record-setting observations of a rapidly warming Arctic, including rising air temperatures, declines of large inland caribou herds, and increasing precipitation. These climate impacts and others threaten the health, subsistence, and homes of many Indigenous communities living in the Arctic.
The full Arctic Report Card can be read here.
“What if you’re not on the map?”
Dr. Kelsey Leonard of the Shinnecock Indian Nation addressed this question to a room of Geographic Information System (GIS) professionals at Esri’s global mapping conference in 2023. Leonard, who uses maps to advance Indigenous water justice, asks this question to raise awareness about the absence of Indigenous land and languages in GIS tools. The removal of traditional place names in physical spaces, cartographic maps, and geospatial software often contributes to the erasure of Indigenous culture and history.
The Permafrost Pathways project, like Leonard, is working to change that.
Read more on Permafrost Pathways
Under the thick forest of Mexico’s Yucatán Peninsula, the ancient ruins of a Maya City have been uncovered with the use of remote sensing.
Of course, that wasn’t the outcome that Woodwell Climate’s Chief Scientific Officer, Dr. Wayne Walker, anticipated when he and his team collected and processed the remote sensing dataset for an unrelated project nearly a decade ago.
Walker’s team was mapping the region as part of the Mexico REDD+ project, a collaborative, international effort to explore strategies for reducing emissions from deforestation and degradation in the country. Using a remote sensing technology called LiDAR, which scans terrain from a low-flying plane using pulses of laser light, Walker and project collaborators created a comprehensive map of forests—and the carbon they contain—across Mexico.
Walker and team coordinated the flights and processed the raw data for use in the project, uploading it afterwards to a website for public use. But, once the project ended, he all but forgot about the effort, apart from responding occasionally to researchers interested in downloading the dataset for their own work.
One of those researchers was Luke Auld-Thomas, a PhD candidate at Tulane University researching the Classic Maya civilization, which thrived in the Yucatan until the 9th century when much of the region was abandoned, though their culture and languages persist to this day. Because of its unique ability to provide a detailed three-dimensional picture of whatever features are present on the ground, LiDAR imagery is an incredibly powerful tool for a multitude of purposes, from climate science to archaeology. And while the Mexico REDD+ project was interested in documenting the forests, Auld-Thomas was interested in what might be hidden beneath them.
“One scientist’s noise is another’s entire field of study,” says Walker. “In our other projects, like Climate Smart Martha’s Vineyard, we see historical structures like stone walls that aren’t necessarily meaningful to our work but could be of interest to archaeologists.”
In Mexico, the large areas surveyed by Woodwell Climate revealed not just individual human-built structures, but the plazas, reservoirs, and ball courts of an entire, previously undocumented city. The discovery, published in the journal Antiquity, supported the theory that the region was, in fact, densely settled during the height of Classic Maya civilization.
“We knew that it was close to a lot of interesting sites and settlements— areas of large-scale landscape modification that had been mapped and studied— but none of the survey areas themselves were actually places that archeologists ever worked, making it a really exciting sample to work with,” said Auld-Thomas.
Auld-Thomas had specifically been on the hunt for a pre-existing LiDAR dataset like the one Walker helped create— a survey conducted for completely non-archaeological purposes and therefore free of any biases. Essentially a “random sample” of the region. That randomness, and the subsequent discovery of an entire city, allowed Auld-Thomas and his colleagues to more strongly argue their point about intense urbanization in the Yucatán.
“If you’re only going to places where you know there’s going to be something, then of course, you’re going to find something significant, right? These random samples, not collected for archeological purposes, are gold in some respects,” said Dr. Marcello Canuto, who co-authored the paper. Canuto directs the Middle American Research Institute at Tulane, where the research for this study was conducted.
The unexpected outcome of the LiDAR survey offers a textbook example of the value of open data access. Sharing data and resources both within and between fields of science can jumpstart discovery and distribute the costs of an otherwise expensive data collection effort.
“Just look at what came out of the moonshot,” says Canuto. Thousands of technologies, developed in humanity’s pursuit of the moon landing, have found unforeseen applications in today’s world— including LiDAR.
“Certainly, many of us have produced datasets that have led to incremental advances in closely related fields,” says Walker. “But here is a special case of open source data advancing discovery in an entirely unrelated field of study.”
Advancements across fields continue to better our understanding of the world around us. And the lessons learned from a civilization like the Maya have very real parallels to today’s climate crisis.
As Auld-Thomas and Canuto show, the Maya densely settled the Yucatán Peninsula, maxing out the capacity of the surrounding environment to support their population. And then the regional climate shifted. A long-term drought settled in, resources became scarcer, governments became unstable, people started leaving the cities, and the infrastructure of the larger civilization collapsed.
“The reason environmental scientists collect LiDAR data of the forest, is that they are trying to understand environmental processes in order to help human societies conserve the landscape,” says Auld-Thomas. “As archaeologists, we try to understand how people in these exact environmental contexts have confronted deforestation and climate change and all of these other things before.”
For Canuto, the lesson to be learned lies not just in the environmental perils, but in the societal ones. Because what complex societies hate— be they the Classic Maya or today’s modern culture— is a lack of predictability. If a system cannot adapt, it will fail.
“The collapse was more than just climate change,” says Canuto. “It was a failure of a political system to respond to climate change.”
La capitale congolaise Kinshasa s’étend sur la rive sud d’un coude turbulent et boueux du fleuve Congo. C’est ici que Glenn Bush, chercheur associé de Woodwell Climate, et Joseph Zambo, coordinateur des forêts et du changement climatique, ont rejoint d’autres chercheurs et responsables gouvernementaux dans les salles de conférence d’un hôtel du centre-ville pour un atelier de trois jours sur la tourbe.
Glenn Bush est un économiste et spécialiste des sciences sociales qui travaille depuis 16 ans en République démocratique du Congo (RDC), où il étudie les structures sociales et économiques qui déterminent l’utilisation des terres. Zambo est le reponsable de Woodwell Climate en RDC, et assure la liaison entre les résidents locaux, le gouvernement national et les chercheurs internationaux. Ces deux chercheurs se sont engagés à conseiller le gouvernement de RDC afin de l’aider à créer sa « contribution déterminée au niveau national » (CDN), qui définit l’engagement du pays à réduire ses émissions dans le cadre des Nations unies sur le changement climatique.
Les tourbières, un type d’écosystème humide, pourraient constituer un élément essentiel de la contribution de la RDC. Ces sols riches en carbone qui s’étendent sur de vastes surfaces de la forêt tropicale congolaise doivent impérativement être protégés. Des activités telles que l’agriculture, la déforestation et le changement climatique ont cependant déjà commencé à grignoter le précieux stock de carbone. Et une fois libérée, la tourbe prend des millénaires à se renouveler.
Les tourbières du Congo se trouvent principalement dans les forêts humides et marécageuses dans le « centre du bassin » du Congo. Elles se forment sur les rives humides des cours d’eau – un environnement pauvre en oxygène qui ralentit le processus de décomposition, permettant à la matière organique de s’accumuler au fil du temps pour former un sol spongieux qui emprisonne le carbone, l’empêchant ainsi de rejoindre l’atmosphère.
La stabilité d’une tourbière dépend du taux d’humidité et des matières organiques. En cas d’assèchement d’un marais tourbeux, le carbone en contact avec l’air est immédiatement exposé à la décomposition et à l’érosion.
« Dès que les bactéries aérobies commencent à pénétrer dans la tourbière, explique Bush, tout ce carbone commence alors à devenir instable. Il est donc crucial d’éviter autant que possible de perturber cette tourbe. »
Mais, cette mesure est une action difficile à entreprendre de nos jours. La croissance démographique pousse les populations à s’enfoncer vers des marais boisés, exploités souvent pour l’agriculture, notamment pour la production du riz dans les zones humides ou la pisciculture, afin de subvenir aux besoins de leurs familles et de leurs communautés.
Les tourbières sont également extrêmement sensibles à la dégradation et à la déforestation dans le biome de la forêt tropicale. Au cœur du bassin du Congo, la forêt tropicale est en fait le moteur de la création de la plupart de ses propres pluies – la saison des pluies de printemps est déclenchée par l’humidité insufflée dans l’atmosphère par les plantes, plutôt que par le vent de la mer qui pénètre les terres. Face aux effets desséchants de la déforestation, le Congo est donc encore plus fragile que l’Amazonie.
« Pour chaque hectare de forêt perdu en Afrique, on perd proportionnellement plus de précipitations que pour une quantité similaire de forêt perdue en Amérique latine ou en Asie du Sud et du Sud-Est », explique Dr Mike Coe, directeur du programme Woodwell Climate Tropics.
Quelle est la superficie exacte des tourbières du bassin du Congo ? Et quelle serait la gravité de leur disparition en termes d’émissions ? La réponse à ces deux questions est « nous n’avons aucune donné précise ».
La recherche commence à peine à cartographier cet écosystème critique. Récemment, une équipe de chercheurs congolais et britanniques dirigée par le Dr Simon Lewis de l’université de Leeds a parcouru deux transects de 20 à 30 kilomètres de forêt marécageuse pour prélever des échantillons afin d’évaluer l’existence de tourbières. Ils en ont trouvé partout dans la forêt. Au total, on estime à 145 000 kilomètres carrés la superficie de la région.
Cela représente environ 30 milliards de tonnes de carbone, soit plus de 20 fois les émissions annuelles de combustibles fossiles des États-Unis.
« Il ne s’agit que de deux transects dans l’ensemble du bassin du Congo, mais qui nous ont permis de recalibrer les modèles existants d’étendue et de qualité des tourbières, et cela démontre que nous visitons un trésor de carbone tropical », insiste Bush.
Protéger les tourbières est crucial, mais dans la pratique, elle est difficile à mettre en œuvre. Pourquoi ?
À l’heure actuelle, les tourbières sont plus utiles pour les congolais en tant que ressources foncières permettant de produire de la nourriture, de chasser, de pêcher et de récolter des plantes et des matériaux de construction, qu’en tant que forêt intacte. Selon certaines estimations, plus de 90 % de la déforestation dans le pays a pour but de soutenir l’agriculture de subsistance. C’est une nécessité pour près des trois quarts de la population du pays qui vit avec moins de 2,15 $ par jour.
En 2020, Zambo et Bush, accompagnés de Kathleen Savage, chercheuse principale à Woodwell, ont mené des études sur les méthodes d’intensification agricole dans les rizières humides, qui sont souvent créées sur des tourbières déboisées. L’application de techniques agricoles différentes, consistant à désherber et à s’occuper des plants de riz tout au long de la saison plutôt que de voyager et de revenir pour la récolte, permettaient un augmentation considérable des rendements sur la même surface, ce qui réduit la nécessité d’augmenter de grignoter la forêt pour augmenter la productivité.
« Rien qu’en s’occupant du riz, on pourrait peut-être sauver environ 30 % de la forêt », explique Savage.
Les agriculteurs ont reconnu les avantages de cette méthode, mais hésitent à l’adopter. En attendant la croissance du riz, le temps est souvent consacré à gagner un revenu supplémentaire pour les charges immédiates. Tabler sur un revenu plus conséquent à la fin de la saison est un risque qu’ils ne veulent pas toujours se permettre. Une bonne récolte n’est pas garantie ; les parasites, la sécheresse ou les inondations peuvent anéantir le travail d’une année, laissant les agriculteurs sans revenu. Cette fragilité pousse les populations à prendre des décisions difficiles quant à l’utilisation des forêts.
« La RDC ne dispose d’aucun filet de sécurité sociale », rappel Savage. « En fait, le filet de sécurité sociale, c’est la forêt – la chasse, l’abattage d’un arbre et la vente du bois parce qu’il vaut beaucoup d’argent. »
Afin d’éviter la déforestation et la dégradation des tourbières, les communautés rurales devront trouver une autre source de revenus. Bush et Zambo ont discuté du potentiel des marchés du carbone pour fournir ces revenus.
Les marchés du carbone sont des systèmes d’échange qui attribuent une valeur monétaire à la prévention de l’émission de carbone dans l’atmosphère ou à son élimination active. Ils fonctionnent sur la base de la vente de « crédits carbone » qui représentent théoriquement une tonne métrique de carbone stockée ou séquestrée grâce à des pratiques de gestion des terres. Idéalement, l’argent provenant de leur achat va directement aux personnes qui gèrent les terres, qu’il s’agisse d’un agriculteur qui protège les forêts ou d’un groupe communautaire qui restaure les zones dégradées.
En réalité, les crédits carbone sont difficiles à vérifier en raison de la faiblesse des réglementations et du manque de données.
« Le problème du crédit carbone est que personne n’est vraiment sûr de la qualité et des normes de livraison, ni de la manière de les mesurer et de les contrôler, car il est évident que quelqu’un ne se présente pas à votre porte avec un sac rempli de carbone », nuance Bush.
Jusqu’à présent, la mise en œuvre du marché a été entravée par des accusations d’écoblanchiment de la part des entreprises polluantes qui achètent des compensations et par des programmes réglementaires gouvernementaux qui peinent à prouver le bénéfice sur le climat et la biodiversité. Bush et Zambo estiment néanmoins qu’une version de cette solution pourrait apporter des revenus plus conséquents directement aux agriculteurs si elle est bien appliquée.
Bush travaille avec l’équipe carbone de Woodwell Climate à l’élaboration d’un indice de capital paysager (ICP) qui utilise des normes scientifiques pour évaluer le potentiel de toute parcelle de terre à atténuer les effets du changement climatique et à offrir d’autres avantages tels que la biodiversité et le cycle de l’eau. Une fois affiné, l’indice fournira des données permettant de vérifier les crédits carbones.
Zambo s’est beaucoup a mené des discussions approfondies avec le ministère de l’Environnement sur le plan national zéro émission. Avec Bush, il espère qu’un marché du carbone soutenu par la science pourrait générer des moyens économiques pour financer de nombreux projets de développement durable décrits dans le plan.
« La validation du carbone stocké dans cet écosystème pourrait générer beaucoup d’argent dans le pays pour le développement », déclare Zambo.
Un autre obstacle à la mise en œuvre d’un marché du carbone efficace est de trouver des données disponibles pour alimenter l’ICP. Comme souligné par Bush, les données actuelles sur le carbone des tourbières ne sont basées que sur une fine tranche de l’ensemble du bassin. Le financement des projets de conservation au niveau local nécessite une compréhension beaucoup plus détaillée de l’étendue et de la qualité du carbone présent dans l’ensemble de l’écosystème. La collecte de ce type de données nécessitera davantage de scientifiques – des scientifiques congolais – et davantage de compétences techniques chez les fonctionnaires qui pourraient être responsables de la gestion des programmes de conservation à l’avenir.
« La RDC doit renforcer ses capacités en matière de cartographie des tourbières afin d’élaborer une stratégie nationale spécifique aux tourbières », explique Zambo.
L’atelier auquel ont participé Bush et Zambo à Kinshasa étaient principalement basé sur le renforcement des capacités.
« Cet atelier revêtait d’une importance capitale dans la mesure où il a permis le partage des connaissances et des avancées au sujet de la collecte de données sur les tourbières, devant permettre au gouvernement congolais d’identifier les données manquantes, de sensibiliser les parties prenantes et de créer des synergies entre les tourbières et d’autres initiatives climatiques », explique M. Zambo.
Il faudrait également appuyer les capacités scientifiques avec des ressources technologiques supplémentaires. Savage a travaillé avec l’assistante de recherche Zoë Dietrich pour mettre au point des chambres de surveillance du méthane portables et peu coûteuses, qui seront utilisées sur des sites de recherche de terrain au Brésil et en Alaska. Savage estime qu’il est possible d’adapter la conception de ces chambres pour la situation en RDC, afin de surveiller les flux de carbone dans les forêts des zones humides.
« Actuellement, en termes de comptabilisation du carbone, [la RDC] utilise des mesures estimées à partir d’un autre pays similaire et l’on suppose que c’est également ce que font leurs forêts. Mais pour obtenir des chiffres précis, il faut vraiment passer à des mesures directes », explique Savage.
Beaucoup reste à faire pour que les marchés du carbone deviennent un mécanisme de financement viable pour les grands efforts de conservation en RDC. La durabilité et la croissance économique se résumeront en fin de compte à fournir aux ménages ruraux des alternatives pragmatiques de subsistance et à développer un sentiment de sécurité financière. Mais Bush espère que l’enthousiasme suscité par leur potentiel pourrait contribuer à faire traverser l’impasse des discussions, non seulement sur la conservation et le climat, mais aussi sur la gouvernance économique du pays à plus grande échelle.
Après tout, le marché du carbone est un marché au même titre que ceux qui vendent des sacs de riz ou du bois de valeur.
« Une fois que les acheteurs et les vendeurs ont compris la valeur fondamentale de ce qu’ils achètent et vendent, ils ont besoin des mêmes conditions-cadres pour fonctionner que n’importe quel marché », explique Bush. « Bonne gouvernance, transparence et respect de l’État de droit. »
Zambo envisage également une solution. En raison des avantages qu’elles procurent à l’écosystème, la valorisation des tourbières peut contribuer à améliorer la situation partout en RDC.
« J’espère que la conservation, la protection, la gestion et le développement des tourbières et des forêts congolaises pourront être un moteur clé du développement durable du pays », conclut Zambo.