In recent public comment, scientists at Woodwell Climate Research Center warn against the use of the Inflation Reduction Act’s (IRA) clean electricity tax credits to support biomass as an effective clean energy solution. Scientists cited its higher carbon footprint per unit energy compared to burning fossil fuels, and highlighted that claims to offset these emissions by planting trees are misleading, as new trees take decades to centuries to recapture lost carbon. The comment, submitted in response to the Internal Revenue Service (IRS) and U.S. Department of Treasury’s proposed guidance on the Clean Electricity Production Credit and Clean Electricity Investment Credit, advocates for more rigorous guardrails from the agencies regarding the use of wood for bioenergy, greater regulatory clarity, and more accurate accounting of emissions from wood-burned fuel.
The Clean Electricity Production and Investment Credits were designed to provide incentives “to any clean energy facility that achieves net zero greenhouse gas emissions.” The proposed guidance, released in June, is intended to clarify and add certainty around how to measure and define “net zero,” and how clean energy production facilities can qualify for these incentives.
In their comment, however, scientists emphasize more work must be done to achieve this goal: “The content of the proposed guidance is ambiguous or even conflicting about some parts of the rule regarding sources of forest bioenergy,” they write. “Parts of the guidance should be made much clearer and more definitive to ensure that there are no unintended consequences. Guardrails could be put in place to avoid the many ways that increasing use of wood for bioenergy would increase emissions rather than having the desired effect of decreasing emissions. It is also important to consider the many values of forests beyond climate mitigation, such as timber, biodiversity, water, and recreation.”
Scientists also note the proposed guidance does not properly account for the net emissions associated with forest bioenergy – all of which contribute to its high carbon footprint and add to concerns from experts that biomass can actually worsen the climate crisis – including those from harvesting intact forests, logging debris, transporting woody biomass, and converting biomass to fuel, as well as from feedstock, fertilizers, and forest management practices like thinning, where live trees are removed to reduce wildfire risk or promote forest growth, and more.
Because many of these emissions are left out, the proposed guidance overestimates the potential of forest bioenergy to achieve the IRA’s intended goal of lowering emissions, and further fuels incorrect assumptions that biomass energy is an effective, carbon-neutral alternative to fossil fuels.
Throughout the comment, scientists offer recommendations to help decision makers more accurately incorporate and represent these emissions in policy. For example: 1) account for both direct and indirect emissions; 2) avoid the fallacy of assuming carbon neutrality; and 3) take a case-by-case approach to calculate the counterfactual emissions, or what the emissions would have been had the wood or biomass not been used for bioenergy; among others.
Hurricane season in North America is underway. Already, the second storm of the year to earn a name, Beryl, has cut a destructive swath across the Caribbean and the United States. This year, the National Oceanic and Atmospheric Administration (NOAA) forecasted an extremely active hurricane season, anticipating between 17-25 named storms (the average is 14) and 4-7 major storms (average is 3). Major storms are category 3 and above with wind speeds exceeding 111 mph.
Intense seasons like this are likely to be a more common occurrence in a warmer world, as higher temperatures, rising seas, and changing weather patterns create the conditions for bigger, more destructive, longer lived, and more rapidly strengthening storms. Here’s how climate change is affecting the Atlantic hurricane season:
To understand how hurricanes are being affected by climate change, it’s important to understand how hurricanes are formed. They are essentially clusters of thunderstorms, building strength as they sweep westward using the energy from warm tropical waters. Under the right conditions, the Earth’s rotation will cause the cluster to spin into a cyclone shape. Because heat is energy, increases in sea surface temperatures play a critical role in strengthening these storms.
The ocean is a major heat sink for the planet, absorbing over 90% of the excess heat trapped by greenhouse gasses in the Earth’s atmosphere over the past few decades. Global sea surface temperatures have increased approximately 2.8F since the beginning of the 20th century, and ocean heatwaves — large areas of above-normal temperatures that can last for months-– are much more common and widespread. A hotter ocean means there is more energy available to fuel tropical storms, ultimately making it a more destructive event when it hits land.
The second thing a hurricane needs to form is moisture. Water is evaporated and pulled up into the developing storm as it spins across warm waters of the tropical Atlantic. Hotter air temperatures mean more moisture can be held as vapor in the atmosphere, which allows storms to ingest greater amounts of water that will eventually condense into clouds and be released as rainfall. Condensation also releases heat into the storm, fueling its intensification. Models estimate that human-caused global warming has increased hurricane extreme hourly rainfall rates by 11%.
Climate change is also contributing to larger swings between the two phases of the El Niño Southern Oscillation (ENSO)—meaning stronger versions of both El Niño or La Niña patterns. Currently, the Atlantic is headed towards a La Niña, which favors hurricane formation because it lessens vertical wind shear. Differences in wind speeds at different heights in the atmosphere can tear a storm apart, while less shear (more consistency in wind speeds between altitudes) allows storms to stay together and build strength.
All these factors add up to more intense tropical storms in a world altered by climate change— meaning more category 3-5 storms and more big storms back-to-back. Since 1975 the number of category 4-5 cyclones has roughly doubled.
This doesn’t necessarily mean that there will be more hurricanes; however, the ones that do form can be bigger and cause more damage (on top of the already estimated $2.6 trillion in damages since 1980.) If anything, data shows a slight decrease in the number of storms, moving more slowly along their path, releasing their extreme wind and rain over a single location for longer periods.
Sea level rise due to climate change has also made hurricanes a more dangerous threat for more people. As sea levels rise, coastlines are put at increased risk of flooding.
Sea levels have risen roughly 8 in since the late 19th century, and the rate of rise is accelerating as climate change worsens. When a hurricane makes landfall, water is pushed inland by high-speed winds in an event known as storm surge. Every additional inch of sea level rise allows the surge to travel farther inland, threatening a wider area and causing more damage, death, and injury— especially in areas where human development along the coast has exposed people and homes to greater risk.
As temperatures continue to rise, communities along the East and Gulf coasts can expect to be hit harder by destructive storms. Despite this, more and more people are choosing to live and build along the coasts, increasing the cost of damages when hurricanes do strike. Slowing warming temperatures and building adaptation measures to protect coastal communities will become more urgent as Atlantic hurricanes intensify.
Despite facing regional threats like deforestation and wildfires, the world’s forests continue to be a powerful weapon in the fight against climate change. A new study reveals these vital ecosystems have consistently absorbed carbon dioxide for the past three decades, even as disruptions chip away at their capacity. The study, based on long-term ground measurements combined with remote sensing data, found that forests take up an average of 3.5 ± 0.4 billion metric tons of carbon per year, which is nearly half of the carbon dioxide emissions from burning fossil fuels between 1990 and 2019.
The study titled “The enduring world forest carbon sink,” published in the June issue of the journal Nature, highlights the critical role of forests in mitigating climate change. The study further shows that deforestation and disturbances like wildfires are threatening this vital carbon sink.
The research is co-led by U.S. Department of Agriculture (USDA) Forest Service Northern Research Station Senior Research Scientist Yude Pan and Woodwell Climate Senior Scientist Richard Birdsey, and includes 15 additional co-authors from 11 countries.
Some of the key findings include:
“Our research team analyzed data from millions of forest plots around the globe,” Pan explained. “What sets this study apart is its foundation in extensive ground measurements – essentially, a tree-by-tree assessment of size, species, and biomass. While the study also incorporates remote sensing data, a common tool in national forest inventories and landsurveys, our unique strength lies in the detailed on-the-ground data collection.”
“The persistence of the global forest carbon sink was a surprise given global increases in wildfire, drought, logging, and other stressors,” according to Birdsey. “But it turns out that increasing emissions in some regions were balanced by increasing accumulation in other regions, mainly re-growing tropical forests and reforestation of temperate forests. These findings support the potential for improving protection and management of forests as effective natural climate solutions.”
The study describes how certain land management policies and practices can help preserve this global carbon sink. According to co-author Professor Oliver Phillips from the University of Leeds, who coordinates the pan-tropical ForestPlots.net coalition of scientists supporting key networks such as AfriTRON and RAINFOR, “the extraordinary persistence of the carbon sink shows that forests have mostly coped with climate change, so far. Deforestation, fire, and logging are damaging forests everywhere, but drought less so. Helping Earth’s forests resist climate change will mean keeping them as intact, healthy and vibrant ecosystems.”
Findings support a focus on curtailing deforestation across all forest biomes, for example, promoting forest restoration on lands that may be unsuitable for agriculture, and improving timber harvesting practices to minimize emissions from logging and related activities. The research also highlights the limitations in data collection, particularly in tropical regions. The study calls for increased research and establishment of more ground sampling plots in these areas to reduce uncertainties in carbon estimates and improve understanding of the global carbon budget.
On May 18th, Morris Alexie, Permafrost Pathways Tribal Liaison for the Alaska Native Village of Nunapicuaq (Nunapitchuk), traveled for three days to South America to join EarthRights International and other Indigenous leaders from around the world at the Public Hearing on the Advisory Opinion on Climate Emergency and Human Rights.
Read more on Permafrost Pathways
A new study, just published in the journal Nature Communications Earth & Environment, finds that severe droughts in the Amazon basin over the last two decades have led to longer periods of low water levels and triggered profound impacts on the local population.
The severe droughts in 2005, 2010, and 2015-2016, in particular, not only drastically reduced water levels in a substantial part of the world’s largest river system, but also resulted in low water level periods exceeding 100 days, a month longer than expected.
These droughts have major impacts on rural, remote Amazonian communities who heavily rely on inland water transport to access goods and services, reach urban centers, and maintain their livelihoods. The study concludes that during severe droughts, when such water transport is not available, nearly 50% of non-Indigenous localities and 54% of Indigenous villages in the Brazilian part of the Amazon basin are prone to isolation. These droughts also expose Amazonian communities to scarcity of goods, restricted access to healthcare and education, limited access to fishing and hunting sites, and other major impacts.
“This is the new reality of the Amazon,” said Dr. Letícia Santos de Lima, researcher at the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) and lead author of the study. “Scientists have been warning for years that the Amazon basin is facing a substantial increase in the frequency and intensity of extreme events due to climate change, on top of severe changes in its hydrological system due to deforestation and forest degradation. These past droughts as well as the most recent one, 2023-2024, are showing that the impacts on the ecosystems extend severely to the Amazon population.”
“The Amazon faces increasingly severe droughts due to global warming, with very real consequences for the communities that live there,” added Dr. Marcia Macedo, Woodwell Climate Research Center scientist and study co-author. “To better prepare for these extreme climate events, we need climate solutions that prioritize water resources alongside efforts to curb carbon emissions. This will be key for sustaining resilient ecosystems and communities in the Amazon and around the world.”
The paper states that “actions to cope with recent droughts in the Amazon have been reactive rather than proactive and grounded in preparedness and adaptation principles,” and calls for Amazon countries to “develop long-term strategies for mitigation, adaptation, and disaster response.” The authors also stress that any solutions to isolation must not also worsen the problem. For example, roads would not be an effective solution as they are a well-known driver of deforestation, which leads to changes in rainfall, contributes to a higher volume of sediments in rivers, and would impair navigability even further.
Using an interdisciplinary approach, researchers combined spatial analysis, methods from hydrology, and news media content analysis to deliver the first spatiotemporal assessment of cross-sectoral impacts of droughts in the Amazon basin.
I am a woman that lives for adventure, mud, and heat. The Caribbean sunshine, warmth, and humidity of my island, Boriké, hug me every single day. That’s why many people find it strange that in the summer of 2022 I ended up on the other side of the world from my Carribean Island home, willingly experiencing freezing temperatures.
So, here’s my story: I grew up in Puerto Rico, a couple of Caribbean islands that are very vulnerable to the effects of climate change. The burning of fossil fuels and the destruction of forests are causing Arctic ice to melt which, in addition to affecting the climate of the planet, is affecting Boriké. Rising sea levels, more frequent and stronger hurricanes, and constant landslides are some of the dangers I am already experiencing on my island.
Although I do a lot of environmental work there, a few years ago I decided to visit the Arctic to fully understand how climate change is also affecting other types of ecosystems. Because climate change is a global phenomenon, I sought to learn how to properly support and collaborate with other at-risk communities outside of the boundaries of my islands, even if that meant stepping outside my comfort zone in another part of the world.
The problem was: I’ve never lived in polar temperatures. I’ve hiked hundreds of miles of coastal and humid tropical forests to conduct research, yet visualizing myself as an Arctic scientist in an environment so different was nearly impossible.
But as I said before, I am a woman that lives for adventure, so if I was going to experience a new environment I was going to get the full experience.
So that summer I packed up my giant backpack and joined eight other young researchers for Woodwell Climate’s Polaris Project— a two-week long research trip in the Yukon Kuskokwim Delta of Alaska. Polaris gives students the chance to design their own studies and gain experience conducting Arctic research. It was with Polaris that my battle against the cold began.
I spent my time in remote areas of the Tundra, a carbon-rich ecosystem lacking mountains and trees, yet full of life and history. I had to live in a tent to conduct my research on how the groundwater system is changing. My usual day in the Arctic looked like lots of hiking in the mud, carrying pipes and drills in my backpack, wearing mosquito nets, and taking water and soil samples in temperatures as low as 48 degrees Fahrenheit. Although 48 degrees might not be cold for many folks on Turtle Island— the original name for North America — as someone from the Caribbean, anything below 70 degrees is already too cold to handle.
Add onto that, the rainy days, the lack of access to communications, internet, electricity, and water service. Needless to say, my first experience with cold was an intense one.
But you know what? I loved it.
I loved working with new friends, colleagues, and mentors. I loved getting to know the Yup’ik and Cup’ik communities guarding these lands. I loved doing science projects that served a common good.
I loved fieldwork in the cold.
However, when I went back home and felt that rich Caribbean sunshine and heat again, I began questioning myself.
How could I have enjoyed working in the cold? Could I really be a scientist in the Arctic even though I didn’t grow up in the Arctic? My Polaris experience lasted only two weeks, and they were the most challenging two weeks of my entire career. Could I endure weeks, months, or even years in these conditions?
Would I let the cold win this battle?
Well, I would have to face the cold one more time either way. Polaris students present the results of their research each year at the American Geophysical Union conference in December. To give my research presentation, I had to travel to Chicago— in the middle of winter.
Have you ever felt the chilling winds of Chicago? It’s known as the windy city for crying out loud! I guess it was time for me to get back to the battlefield.
I packed all my coats, got on a plane, touched down in traditional Potawatomi lands, and tried not to freeze to death.
The wind and snow was strong the day I had to present my research. It was actually my first time experiencing snow falling from the sky, so I bundled up warmly. But as I was walking to the convention center, going over in my mind the speech I had to give, I felt the most chilling cold I had ever experienced in my life. When I looked down at my feet, I realized that I had packed the wrong shoes! In thin flats, my feet were totally exposed.
This was the moment you might conclude that the cold finally beat me. Yet, when I looked back down at my exposed feet, I just couldn’t stop laughing.
After so much effort to “win the battle”, at that very moment I realized the battle doesn’t exist. There is no battle against the cold.
Living in the cold is a lifestyle like any other. Just as my ancestors taught me how to live in harmony with the tropical climate, there are entire communities that apply their millennia-old knowledge to live in harmony with polar temperatures, and in fact depend on it to keep the ground they are built on from thawing and collapsing.
It wasn’t until that moment in Potawatomi lands that I fully realized how much I loved working in Yupi’k and Cupi’k lands. I learned that, whether it’s in the Arctic or in the Caribbean, to become a responsible scientist I need to rethink and rework my perspective and relationship with the land.
Valuing and protecting cold lands, using guidance from the communities that live there, is critical to maintaining a stable climate. For me, embracing the cold gave me a strong step towards stopping climate change.
The MacGyver session at the annual American Geophysical Union (AGU) conference is full to the brim with scientists showing off blinking circuit boards and 3D-printed mechanisms. Research Assistant, Zoë Dietrich, stands in front of her poster and a plexiglass cube sprouting wires. As she speaks, a whizzing sound emanates from the box as it lifts itself up on one side, holding itself open long enough to flush the interior with air from the room. A laptop screen reads out numbers from the sensors in the box, detailing changes in the concentrations of carbon dioxide and methane within.
Dietrich constructed this device herself. It’s a low-cost, autonomous, solar-powered chamber designed to float on water and measure the flow of carbon into and out of the water. Dietrich has spent the past 1.5 years testing and troubleshooting various prototypes, and has already begun deploying models at research sites in Brazil and Alaska. Now she’s sharing her work with the broader scientific community in hopes of encouraging others to build their own versions.
“One of the goals of the chamber project is to make the construction very accessible so that scientists like me, without formal engineering training or background, can build the chambers pretty easily,” says Dietrich.
This was good news for Grand Valley University masters student, Jillian Greene, and her professor Dr. Sean Woznicki, who encountered Dietrich and her chambers at AGU. Though neither of them had experience with mechanical or electrical engineering, they knew immediately a device like Dietrich’s could be invaluable to their research.
Greene’s project involves sampling carbon emissions at drowned river mouth estuaries connected to Lake Michigan. She and Woznicki will then correlate that data with other ecological characteristics gleaned from satellite imagery. There are over one hundred of these freshwater estuary-like features around the region, and Greene and Woznicki are hoping to paint a complete picture of their cumulative role in carbon cycling.
“Originally, I was going to manually sample and quantify with a gas chromatograph,” Greene says. That’s a time-consuming process that limits the amount of data one team can collect. With the chambers, however, Greene can collect emissions data every 30 seconds—greatly expanding the amount of data she’ll be able to incorporate into her models.
“This is going to make our model a lot more robust and hopefully applicable to other drowned river mouth estuaries in the region,” says Greene.
Greene and her research team have already created and deployed 6 chambers. Since AGU, she has been in contact with Dietrich, troubleshooting issues as they arise and learning an entirely new set of skills as she goes.
“[the team] has learned how to solder, how to interpret the circuit diagrams, problem solve, and adjust for our kind of unique systems that we’re looking at,” says Woznicki. “It’s really been exciting to use Zoë’s design as a learning experience for masters and undergrad students.”
Dietrich has had other groups at Colgate University and the University of California, Berkeley reach out to her as well, and she is planning to publish a paper this fall that will include detailed instructions for anyone else to construct their own chambers. She’s already shared preliminary drafts of the step-by-step instructions, including photos, diagrams, and tips, as well as programming and data-processing code and a specific materials list with the other research groups. In turn, they have provided her with helpful revisions and ideas for new modifications. Dietrich is excited about the prospect of the designs being implemented by more people. More chambers means more data, which benefits the entire scientific community.
“Our sampling of carbon right now is limited by expensive instruments and where people can go and who has access to these resources,” says Dietrich. “But the goal of this project is to be low cost and more accessible to a broader set of researchers. The chambers are autonomous, and so are accessible to places and times that aren’t otherwise being sampled right now. And taking that a step further, we need to make them accessible to be built by anyone.”
The Alaska Native Village of Kuigilnguq (Kwigillingok; pronounced kwee-gill-in-gawk), a word that means “no river” in Yugtun, the traditional Yup’ik language, is a federally recognized Tribe in the Yukon-Kuskokwim Delta near the southwest coast of the Bering Sea.
Read more on Permafrost Pathways.